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REVIEW

Mast cell activation: beyond histamine and tryptase
Theoharis C. Theoharides a,b, Adam I. Perlman c, Assma Twahira and Duraisamy Kempuraj a

aInstitute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA; 
bDepartment of Immunology, Tufts University School of Medicine, Boston, MA, USA; cDepartment of Medicine, Mayo Clinic, Jacksonville, FL, USA

ABSTRACT
Introduction: Mast cells are found in all tissues and express numerous surface receptors allowing them 
to sense and respond to allergic, autoimmune, environmental, neurohormonal, pathogenic and stress 
triggers. Stimulated mast cells are typically called ‘activated’ but the mechanisms involved and the 
mediators released can vary considerably. Mast cell activation diseases (MCADs) include primary, 
secondary and idiopathic conditions, especially mast cell activation syndrome (MCAS), but mast cells 
are activated in many other disorders making the diagnosis and treatment challenging.
Areas covered: Mast cells can release numerous biologically active mediators, some of which are prestored in 
secretory granules while others are newly synthesized and released without degranulation. Most of the 
emphasis has so far been on secretion of histamine and tryptase, which do not explain all the multisystemic 
symptoms experienced by patients with MCADs. As a result, drug development has focused on antiprolifera-
tive therapy or blocking the action of individual mediators and not on inhibitors of mast cell activation.
Expert opinion: Activated mast cells are involved in the pathogenesis of MCADs, but also in other disorders 
making appropriate diagnosis and treatment challenging. The definition of mast cell activation should be 
expanded beyond histamine and tryptase, with an emphasis on better detection and treatments.
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1. Introduction

Mast cells [1–5] have existed for almost 500 million years [6,7] in 
many different species, including invertebrates and lower verte-
brates (e.g. frogs, lizards, zebrafish) [8–10], suggesting that they 
served a critical role acting as multifunctional effector cells [11] or 
pluripotent ‘immunoendocrine master players’ [12].

Previous reviews have discussed the role of mast cells in 
health and disease not only in allergies [1,13–21], but also in 
immunity and inflammation [19,22–24]. In mammals, mast 
cells derive from hematopoietic CD34+ precursors [25–27], 
travel in the circulation as precursor cells, and express the 
surface antigens CD117 (KIT), a tyrosine kinase receptor 
which is the ligand for stem cell factor (SCF) [28]. In systemic 
mastocytosis, mast cell precursors also express CD3 and CD25. 
Mast cells are typically activated by allergens crosslinking 
specific immunoglobulin E (IgE) bound to its high-affinity sur-
face Fc epsilon receptor 1 (FcεRI) [29,30]. IgE probably devel-
oped some 300 million years ago, and interesting that wild 
animals have much higher circulating IgE than humans, prob-
ably as a defense against parasites [31]. Interestingly, circulat-
ing basophils also express FcεRI and may have co-evolved 
with mast cells, but their pathophysiology is quite distinct 
[32,33]. Even though mature mast cells reside in the tissues, 
they probe the blood vessel lumen by extending filopodia 
through endothelial gaps, capturing circulating Ig [34,35]. 
Contrary to early research, fetal mast cells can bind maternal 
circulating IgE and contribute to postnatal allergic responses 
[36]. Surprisingly, prenatal stressful events increased umbilical 

cord blood IgE [35]. Mast cells can be stimulated by a plethora 
of other triggers indicating mast cell activation beyond IgE 
[37], and also the role of IgE beyond mast cells [38].

Mast cells are located in all tissues [39] perivascularly 
[26,40,41]. The chemokines C-C motif chemokine ligand 2 
(CCL2) and CCL5/Regulated on Activation, Normal T Expressed 
and Secreted (RANTES) are potent chemoattractants for mast 
cells [42,43]. Mast cells ‘mature’ under the influence of local 
micro-environmental factors [44,45] such as interleukin-4 (IL-4), 
IL-6 and nerve growth factor (NGF) [46]. In fact, mast cells 
synthesize and release NGF, themselves [47]. Mast cells can 
assume different phenotypes [48], and have typically been 
divided based on their secretory granule content of serine pro-
teases [49–51]. Mucosal mast cells (MMC) contain only chymase 
and connective tissue mast cells (CTMC) contain both chymase 
and tryptase [52]. However, it has never been shown conclusively 
that both these proteases are stored in the same secretory 
granules, and evidence had also indicated there may be more 
than one form of chymase [53]. Mast cell granules also store 
tissue remodeling enzymes, such as carboxypeptidase A3 
(CPA3) and matrix metalloproteinases (MMPs) [54–57].

Mast cell subtypes can also be further distinguished based 
on the granule content of biogenic amines [58] and mucopo-
lysaccharides such as chondroitin sulfate and heparin [1]. 
However, mast cell phenotyping may be modified the discov-
ery of additional unique mast cell molecules [59,60] and 
expression of various surface receptors [61,62]. Figure 1 
shows different models of release of mediators from mast 
cells that should be considered under the term ‘activation.’
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2. Mast cell activation disorders (MCADs)

Understandably, many reviews of mast cell activation diseases 
(MCAD)s focused on mastocytosis [39,63–67]. Briefly, MCADs 
can be divided as follows 1. Primary [e.g. mastocytosis, mono-
clonal mast cell activation disorder (MMAS)]. 2. Secondary [e.g. 
allergies, asthma, cancer, urticarias), and 3. Idiopathic [e,g, 
anaphylaxis, chronic spontaneous urticaria, mast cell activation 
syndrome (MCAS), mast cell activation, unspecified 
Sometimes, Primary MCADs are referred to as ‘intrinsic’ (1), 
while the Secondary MCADs as ‘extrinsic.’

MCADs have different ICM1-CM diagnostic codes (Table 1) 
described in more detail by Valent et al. [68].

MCADs can be confusing [69–74] because there are over 30 
other conditions in which activation of mast cells is suspected 
of being involved such as irritable bowel syndrome (IBS) [75] 
or autism spectrum disorder (ASD) [76] (Table 2). Moreover, 

there are also other conditions that mimic MCADs, but prob-
ably do not involve mast cells (Table 3). Moreover, there are 
conditions that are frequently comorbid with MCADs such as 
postural tachycardia syndrome (POTS) and hypermobile 
Ehlers-Danlos syndrome (EDS) [77–79] that together with 
MCAS have been called the ‘triad’ [80]. It was recently reported 
that dysautonomia was documented in most patients with 
MCAS [81]. Finally, many patients with MCADs are more sensi-
tive to excipients such as additives, colorings and preserva-
tives found in many foods, cosmetics, drugs and 
supplements [62].

The diagnosis of atopic diseases in general, and MCADs, in 
particular, depends on clinical history, the response to medi-
cations that can reduce mast cell-related symptoms, as well as 
the elevation of blood and urine biomarkers (Table 4) [82,83]. 
However, there are instances where mast cell involvement 
remains unrecognized as in patients with alpha-gal syndrome, 
which involves specific IgE to the oligosaccharide galactose-a- 
1,3-galactose (alpha-gal), and is often associated with tick 
bites, but is also found in mammal-derived ingredients com-
monly found in numerous cosmetics, drugs and supple-
ments [84].

The definition of MCAS has generated considerable con-
troversy [85–88]. There have been numerous papers present-
ing consensus criteria for MCAS, the most recent of which was 
by Dr. Gulen et al. that stressed the importance of incidence- 
associated elevation of serum tryptase levels and downplayed 
the significance of urine histamine and prostaglandin D2 
(PGD2) metabolites [89]. These criteria translate to many 
fewer cases of idiopathic MCAS than suspected [90]. These 
criteria were subsequently slightly ‘adjusted’ to describe “a 
subset of patients with no underlying disease, no known 
trigger of mast cell activation and no specific criteria as of 
yet [68]. The original description of MCAS by Dr. Akin et al. [91] 
included elevated 24-hour urine 11β-PGF₂α, which was more 

Figure 1. Schematic representation of different models of release of mediators from mast cells that should be considered under the term ‘activation’.

Article highlights

● Mast cells have many different phenotypes that can change given the 
specific tissue microenvironment

● Mast cells synthesize, store and release hundreds of mediators in 
response to allergic, environmental, neuroimmune, stress and toxic 
triggers

● Release of histamine and tryptase are limited to degranulation, while 
other angiogenic, fibrotic, anti-inflammatory, proinflammatory and 
neurotoxic molecules can be released without degranulation

● Mast cell ‘activation’ should not be limited primarily to histamine and 
tryptase release

● Mast cell activation syndrome still requires serum tryptase elevation 
associated with an episode, but many more patients may qualify for 
mast cell activation, unspecified or for other mast cell activation 
disorder

● Activated mast cells are involved in many other conditions making 
diagnosis challenging and treatment difficult

● Treatment should focus on inhibition of mast cell activation, in 
addition to inhibiting the effects of selective mast cell mediators.
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frequently elevated than N-methyl histamine or serum tryp-
tase [92,93], but also the presence of neuropsychiatric symp-
toms. It was recently reported that patients with hereditary a- 
hyperpotassemia, unlike those with indolent systemic masto-
cytosis, did not have urine elevations of either N-methyl his-
tamine or 2,3-dinor-11β-PGF₂α [94]. A recent review tried to 
associate some ‘non-tryptase urinary and hematologic biomar-
kers’ with MCAS symptoms [95].

The critical issue is not how to define certain syndromes, but 
how to define mast cell ‘activation.’ For instance, many patients 
with MCADs (e.g. allergies, asthma, cancer, urticarias) do not have 
elevated serum levels of tryptase [96]. This should not be surprising 
given the fact that mast cells can be stimulated by many neuroim-
mune- endocrine triggers [97], leading to the release of mediators 
other than histamine or tryptase [96].

Moreover, a subgroup of MCAS patients have extreme sensitiv-
ity to odors and stress, present with neurologic and cognitive 
dysfunction, and are resistant to treatment with antihistamines 
and/or leukotriene antagonists (Table 5). Such patients should be 

Table 2. Conditions suspected of involving activation of mast cells.

● Alpha-Hypertyptasemia

● Amyotrophic lateral sclerosis (ALS)

● Alzheimer’s disease (AD)

● Attention deficit/hyperactivity disorder (ADHD)

● Autism spectrum disorder (ASD)

● Chronic inflammatory response syndrome (CIRS)

● Coronary hypersensitivity (Kounis) syndrome

● Dysautonomia syndrome

● Endometriosis

● Eosinophilic esophagitis/gastroenteritis

● Familial hyper IgE syndrome

● Interstitial cystitis/Painful bladder syndrome (IC/PBS)

● Irritable bowel syndrome (IBS)

● Long-COVID syndrome

● Macrophage activation syndrome

● Migraine headaches

● Multiple chemical sensitivity syndrome

● Multiple sclerosis

● Multisystem inflammatory syndrome (MIS)

● Myalgic encephalomyelitis/Chronic fatigue syndrome (ME/CFS)

● Neurofibromatosis

● Pediatric acute neuropsychiatric syndrome (PAN)

● Periodontal disease

● Post-Lyme syndrome (PLS)

● Psoriasis

● Sick building syndrome (SBS)

● Toxic mold syndrome (TMS)

● Traumatic brain injury (TBI)

● Vitiligo

Table 3. Diseases confused with mast cells disorders.

● Angioneurotic edema

● Carcinoid syndrome

● Cryopyrin diseases

● Dysautonomia

● Scleroderma

● Scombroid (histamine) toxicity

● Vasovagal attack

Table 4. Laboratory tests for diagnosis of atopic conditions.

Blood
● IgE, IgG1, IgG4

● Immune IgE (RAST for alpha-gal, casein, gluten, dust mites, fungi, grass, 
pollen)

● Anti-IgE receptor antibody (basophil activation test)

● CCL2, CXCL8 (IL-8)

● Food Intolerance Panel (immune IgG4)

● IL-4, IL-6, IL-31

● Tryptase

Urine 24 hours or first-morning void (must be kept and sent cold)
● LTE4

● N-Methylhistamine (NMH) or methylimidazole acetic acid (MIA)

● PGD2

● 2,3-Dinor-11b-PGF2a

Table 5. Proposed characteristics for a subgroup of MCAS resistant to treatment.

● Presence of neurologic and cognitive symptoms

● Extreme sensitivity to odors and stress

● Variable elevated serum levels of:

● Chymase

● CRH

● Eosinophilic cationic protein (ECP)

● Heparin

● IL-6

● IL-31

● IL-33

● Matrix Metalloproteinase-9 (MMP-9)

● MRGPRX2

● Neurotrophins

● Osteopontin

● PAF

● SP

Table 1. ICD10-CM diagnostic codes for MCADs (excluding  
mast cell neoplasms and mast cell leukemia).

C96.21 Aggressive systemic mastocytosis
D47.02 Systemic mastocytosis
D47.01 Cutaneous mastocytosis
D89.4 Mast cell activation syndrome and related disorders
● 40 Mast cell activation, unspecified

● 41 Monoclonal mast cell activation syndrome

● 42 Idiopathic mast cell activation syndrome

● 43 Secondary mast cell activation

● 49 Other mast cell activation disorder
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investigated for additional mast cell-associated biomarkers such as 
IL-6, Osteopontin and vascular endothelial growth factor (VEGF) 
(Table 4) [98]. A somewhat analogous situation is that of Chronic 
Spontaneous Urticaria (CSU), in which about 40% of patients are 
resistant to treatment with antihistamines, but was characterized 
by elevated blood levels of the mast cell mediator platelet-activat-
ing factor (PAF) [99], which is also involved in inflammation [100]. 
In fact, elevated levels of PAF had been reported to better reflect 
the severity of anaphylaxis than either histamine or tryptase [101].

Many MCAS patients describe sudden mast cell reactivity to 
multiple triggers (old and new) following a major stressful event 
such as a death in the family, major surgery or extensive trauma. 
This hinged reactivity may be mediated via the action of cortico-
tropin-releasing hormone (CRH) secreted under stress that has 
been repeatedly shown to worsen atopic conditions [102] and 
MCDAs. The main receptor for CRH [receptor-1 (CRHR-1)] was 
shown to be expressed in mast cells of two patients with masto-
cytosis [103], and functional on human mast cells leading to the 
selective release of VEGF without tryptase [104]. Hence, addressing 
stress should be considered in the treatment of MCADs.

3. Pathophysiology of mast cells

In addition to FceRI, mast cells express multiple surface receptors 
for a variety of stimuli (Table 6) [97,105], including receptors for sex 
hormones [106]. Mast cells also can synthesize hormones [107] and 
neuropeptides such as CRH [108], as well as the peptides hemoki-
nin-1 (HK-1) [109], NGF [110], neurotensin (NT), substance P (SP) 
[111] and other neurotrophins [112]. Mast cells in the pineal and 
the hypothalamus may also be involved in circadian rhythms [113– 
115]. There are also a number of putative inhibitory receptors 
(Table 7) [116], such as CD300a [117–120], as well as Siglet-6 
[121], Siglec-7 [122,123] and Siglec-8 for which an anti-Siglec-8- 
antibody was recently reported in a Phase II study to improve 
antihistamine-resistant CSU [124].

The mode and extent of mast cell responsiveness ulti-
mately depend on the interplay between stimulatory and 
inhibitory signaling pathways (Tables 6 and 7) [125].

Mast cells are also triggered by non-IgE stimuli [19,126,127] and 
by additional ligands [128], including complement fragments 
[129,130] neuropeptides [97], such as CRH [131], HK-1 [109], NGF 
[110], NT [132], SP [133] and somatostatin [134,135] via high- 
affinity receptors, as well as by many cationic compounds through 
the low-affinity G-coupled receptor MRGPRX2 [136]. This latter 
process is distinct from that utilizing the FceRI and may lead to 
the release of different mediators. Responses due to degranulation 
of mast cells via activation of MRGPRX2 and FceRI were reported to 
be additive [137]. Moreover, the alarmin IL-33 was shown to 
amplify production of pro-inflammatory cytokines via activation 
of either MRGPRX2 or FceRI [138]. Mast cells can also be stimulated 
via activation of toll-like receptors (TLRs) [139,140] pathogens, 
toxins [141], and pathogens [142–144] as well as viruses 
[145,146] including severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) [147–153]. Mast cells also communicate with T-cells 
during immune response [154,155]. In fact, mast cells can function 
as antigen-presenting cells [156] and induce the maturation of 
dendritic cells [157].

Upon stimulation, mast cells rapidly secrete via degranulation 
multiple mediators [158] that include preformed, granule-stored 
mediators such as heparin, histamine, tryptase and tumor necro-
sis factor (TNF) [3]. Histamine has been the main mediator asso-
ciated with mast cells [159] but is also released from basophils 
[160]. Interestingly, mast cells can also generate a histamine- 
releasing peptide from albumin [161], meaning that once stimu-
lated mast cells can release enzymes that can act on albumin and 
produce a peptide that can further stimulate mast cells. The 
serine proteases chymase and tryptase are considered to be 
stored in the same secretory granules. Tryptase has been studied 
extensively because it is considered an exclusive mast cell- 

Table 6. Main mast cell stimulatory receptors.

Receptor Ligand/Stimulus

A2A, A2B, A3 Adenosine
Ach-m Acetylcholine
ACTH-R Adrenocorticotrophin
ACE2 Angiotensin 2
Beta2-Adrenoreceptor Adrenaline
Cannabinoid CB2 receptor 2-arachidonoyl-glycerol, anandamide
C3a, C5a Complement
CD3, CD25,CD34,CD66,CD326 Unknown
CXCR1–4 Chemokines
CD47 Integrins
CD48 2B4
CD117 (KIT) Stem cell factor
CD226/DNAM-1 Nectin-2 (CD112)
CD300 Eosinophilic Cationic proteins
CLR (calcitonin receptor-like 

receptor)
Calcitoningene related peptide)

CRHR-1, 2 CRH, urocortin
EMR2 Vibrations
Estrogen receptors A,B Estrogens
ETA, B Endothelin-1
FcalphaR (CD89) IgA
FcepsilonR IgE
FcgammaRI, RIIA, RIIB, RIII IgG
GABA-A, B, C Benzodiazepines, gamma-aminobutyric
NMDAR, AMPAR, and kainate 

receptors
Gluatamate

Heparan sulfate Bacterial, viral antigens
H1, H2, H3, H4 Histamine
IL-1R1 IL-1beta
IL-4 R IL-4, IL-13
IL-6 R+IL6ST/GP130/IL6-beta IL-6
IL-10R1,2 IL-10
IL-17 R IL-17
IL-18Ralpha+IL-18Rbeta IL-18
IL-36 R IL-38
LDL, VLDL Apolipoprotein E
Mel1a, Mel1b, MT1, MT2 Melatonin
NGFR (CD271 or p75 

neurotrophinR)
Nerve growth, brain-derived neurotrophic 

factor
MHCI, II Antigenic peptides and drugs
MRGPRX2 Cationic peptides
NK-1 Substance P, hemokinin-1
NT3 Neurotensin
Opioid receptors Endorphins, enkephalins
PAF-R Platelet-activating factor
Protease-activated receptor-2 

(PAR-2)
Proteases

Progesterone receptor Progestins
PTHR1 (PTH/PTHrP type 1 

receptor)
Parathyroid hormone

Purinoreceptors ATP
STTR1-STTR5 Somatostatin
ST2 IL-33
TGFBR1,2 and 3 TGFbeta
TLR(1–9) DAMPs, Pathogens
VDR Vitamin D
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associated mediator and is released during anaphylaxis and 
systemic mastocytosis [162,163], as well as in many cases of 
MCAS [164]. Tryptase activates the pro-inflammatory protease- 
activated receptors (PARs) and generate anaphylatoxins (C3a, 
C5a) [165]. However, there are a number of unexplained findings 
related to tryptase [166]: (a) Elevated PAF levels are better corre-
lated with anaphylaxis than tryptase or histamine [101]; (b) lack 
of tryptase elevations in many patients with MCAS [96]; (c) acute 
increases in serum tryptase were not associated with symptoms 
in diffuse cutaneous mastocytosis [167]; and (e) mast cell activa-
tion in patients with coronavirus disease 2019 (COVID-19) was 
associated with serum greater elevations of chymase, than tryp-
tase or other mast cell mediators [151]. This latter finding may be 
possibly due to the preferential activation of pulmonary mucosal 
mast cells that contain chymase but not tryptase.

Mast cells also secrete newly synthesized mediators 6–24  
hours after stimulation (late- [151] phase reaction); these 
include prostaglandin D2 (PGD2) [168], cytokines (IL-5, IL-6, 
IL-31, IL-33 and TNF-α) and chemokines (CCL2, CCL5 and 
CXCL8) [4,5,169], as well as PAF [170,171] which has been 
implicated in micro thromboses [172,173] and inflammation 
[172]. PAF is the most potent trigger of platelet aggregation 
known, but it is extremely short-lived making its routine mea-
surement difficult [174]. PAF is involved in allergies [175] such 
as allergic rhinitis [176–178] immediate and late cutaneous 
reactions [179], as well as chronic spontaneous urticaria 
(CSU) [99]. Combination treatment blocking both PAF and 
histamine by the histamine-1 receptor antagonist rupatadine 
markedly reduced the severity of peanut-induced anaphylaxis 
[180]. PAF also stimulates mast cells [170] and eosinophils 
[181,182], as well as induces IL-6 production [183–185], 
which in turn stimulates the production of PAF [186,187]. 
Mast cells also secrete mitochondrial DNA that induces auto-
crine and paracrine inflammatory responses [188].

4. Selective release of mediators

Mast cells can release specific mediators via differential release 
mechanisms [189]. It was first shown that was possible for 
serotonin [190–192], and VEGF [49] without degranulation, but 
rather via intragranular changes associated with the release of 

mediators without the release of histamine or tryptase [193]. It 
had been also reported that mast cells can release the content 
of individual secretory granules [194] or individual mediators 
without degranulation [190]. This process was distinct from 
‘piece-meal degranulation’ that had already been reported 
[195], granule-associated vesicle transport [196], or the release 
of extracellular vesicles [197–203].

Mast cells could also form antibody-dependent ‘synapses’ 
for dedicated secretion [203,204] and also communicate via 
the formation of nanotubes [205]. The ‘alarmin’ IL-33 
[96,206,207] stimulates mast cells via activation of their own 
specific surface receptor, ST2/IL-33, significantly increasing the 
ability of SP to stimulate the release of VEGF [133,208], IL-31 
[209], TNF [210] and IL-1β [211] as well as CCL2 and CCXL8 
[212] and other newly synthesized mediators [96]. It was 
recently reported that VEGF and other angiogenic factors 
were elevated in the serum of patients with mastocytosis 
and the degree of elevation correlated with disease severity 
[213,214]. VEGF is also vasodilatory and was shown to be 
increased in lesional skin in CSU [213].

IL-33 also augments the release of IL-31 from human mast 
cells stimulated either by SP or IgE/anti-IgE [112]. Mast cells 
can release IL-33, themselves [116]. Mast cell-derived IL-1β or 
histamine-induced release of IL-1β from macrophages [215] 
can then stimulate mast cells to release IL-6 selectively with-
out degranulation [191,192]. IL-6 is elevated in MCADs and 
correlated with disease severity [216–218] and is also elevated 
in COVID-19 [122;123]. In fact, IL-6 promotes an increase in 
mast cell numbers [219], and is constitutively released in the 
presence of the D816V-KIT mutation [220]. The mode and 
extent of mast cell responsiveness ultimately depend on the 
interplay between stimulatory and inhibitory signaling path-
ways (Tables 6 and 7).

Secretion of mediators can occur utilizing different signal-
ing [20,221–223] and secretory [221,223] pathways (Figure 1).

5. Epigenetic regulation of mast cell functions and 
mast cell-associated disorders

Epigenetics refers influence of environmental and behavioral 
events that alter genes without changing the DNA sequence 
via DNA methylation, posttranscriptional modifications 
through non-coding RNAs, histone modifications and nucleo-
some positioning that affects DNA and chromatin struc-
ture [224].

Epigenetic modifications can be suppressed, cured and 
reversible including in MCAD [225]. Mast cells could undergo 
epigenetic programming that maintains a stable identity but 
can undergo significant plasticity to adjust to different envir-
onmental challenges [226]. Though the implication of epige-
netic changes in the pathogenesis of systemic mastocytosis is 
not yet clearly known [224], several reports indicated epige-
netic modifications may be involved in MCADs [225,227,228]. 
In fact, epigenetic mechanisms could contribute to the familial 
type of systemic MCAD [228]. In particular, some mast cell 
mediators could have autocrine effects. For example, tryptase 
could catalyze histone clipping as a novel epigenetic mechan-
ism in mast cells [229], and tryptase could regulate the epige-
netic modification of histones in mast cell leukemia cells [230]. 

Table 7. Main mast cell inhibitory receptors.

Receptor Ligand

Allergin-1 Inhibitory
ALX/FPR2 LXA4 (proresolving)
CD200R CD200 glycoprotein
Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH)
Lactoferrin

IL-10RI and IL-10RII IL-10
IL-18Ra and IL-1R8 IL-37
IL-36 R a IL-38
Nucleotide converting ectoenzymes (E-NDP1,3,7) ATP
Peroxisome proliferator-activated receptor 

gamma (PPAR-γ)
15d-prostaglandin J2 (15d 

PGJ2)
Protein tyrosine phosphatase (PTPs) Chondroitin sulfate
IRp60 Unknown
Siglec-6,7,8 Unknown
Thrombomodulin Thrombomodulin 

(soluble)
TMEM184A Heparin
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DNA methyltransferase 3A (DNMT3A) and DNA methylation 
play a significant role in acute and chronic mast cell activation 
conditions [231]. Mastocytosis could be treated with inhibitors 
of histone methyl transferase that can cause cell death by 
apoptosis [232]. Epigenetic changes in macrocytosis may 
include mutations in the genes such as TET1, DNA methyl-
transferase enzyme DNMT3A, ASXL1 and gene methylation in 
neoplastic cells [224]. Ten-eleven translocation-2 (TET2) is an 
epigenetic regulator and its expression is induced in response 
to both acute and chronic activation of mast cells [226,233]. A 
recent study showed that butyrate, a histone deacetylase 
(HDACs) suppresses the activation of human mast cells 
through the epigenetic regulation of the FcεRI-mediated path-
way [234]. Phosphorylation of a 78kD protein or serine and 
threonine residues [235], which was later shown to be moesin 
[236], was shown to be associated with inhibition of secretion 
in rat mast cells [237] and basophils [238]. Primary mast cells 
from systemic mastocytosis patients are highly sensitive to 
suberoylanilide hydroxamic acid (SAHA)-induced cell death, 
whereas normal bone marrow mast cells are resistant. Thus, 
HDAC inhibitors may be a potential clinical treatment option 
for SM patients [239]. Histone acetylation is implicated in 
immune response associated with mast cell activation. 
Moreover, dietary substances could alter mast cell functions 
through epigenetic mechanisms [240]. An in vitro study 
demonstrated the role of epigenetics in the expression of 
CD34 and transcription factor HIF1A during the differentiation 
process of mast cells [241]. These reports indicate that epige-
netic mechanisms could influence mast cell function and con-
tribute to mast cell disorders.

6. Effect of neuropeptides

Most patients with MCADs present with neuropsychiatric 
symptoms and cognitive dysfunction [242–244]. The regula-
tion of mast cells by neurotransmitters and neuropeptides has 
been reviewed [97,245,246], with emphasis on CRH [131], HK-1 
[109], NGF [110], NT [132], SP [133] and somatostatin [134,135] 
acting via activation of high-affinity receptors.

Mast cells are also present in the central nervous system 
(CNS) [247,248], especially in the meninges [249,250], and the 
median eminence [249,251,252] where they are located peri-
vascularly close to neurons [253] that are often positive for 
CRH secreted under stress [249]. Mast cells are the richest 
source of histamine in the CNS [254], particularly in the amyg-
dala, hippocampus, hypothalamus and thalamus [255–257]. 
Brain mast cells had been termed the ‘immune gate to the 
brain’ [247]. Histamine is involved in neuronal development 
[258], and also acts as an alert signal in the brain [259]. In fact, 
brain histamine is critical for arousal [260,261], memory con-
solidation [262] and retrieval [263–265], as well as motivation 
[255]. Activated brain mast cells were shown to contribute to 
postoperative cognitive dysfunction via activation of microglia 
[266] involving mediators [267]. Cognitive dysfunction is com-
mon in mastocytosis patients [268,269] and may be related to 
morphological brain abnormalities, Primarily punctuated 
white matter abnormalities, that may potentially explain 
‘brain fog.’

The effect of stress on mast cells has also been reviewed 
[102,270]. Restraint stress in rodents increased blood-brain 
barrier (BBB) permeability [251,271,272] via CRH-stimulating 
mast cells [271,273,274]. Mast cell-derived mediators, such as 
cytokines [275,276], increased BBB permeability not only to 
small molecules [251,271] but also to mammary adenocarci-
noma brain metastases in mice [273]. This process could wor-
sen with stress acting via CRH stimulation of mast cells 
[271,273], leading to increased dura vascular permeability, an 
effect that was absent in mast cell-deficient mice [277]. 
Interestingly, meningeal mast cells affected the integrity of 
the BBB and promoted T-cell brain infiltration [278].

Allergic stimulation of nasal mast cells resulted in stimula-
tion of the hypothalamic-pituitary-adrenal (HPA) axis 
[131,279–281], possibly via mast cell release of histamine 
[282], IL-6 and CRH [108].

Mast cell responsiveness may be regulated not only by the 
neuroimmune stimuli but also by the effects of the different 
receptors involved. For instance, mast cells express high-affinity 
neurokinin-1 (NK-1) receptors for SP [210,283,284]. Moreover, SP 
[284] and NT [285] -induced the expression of CRHR-1 in human 
mast cells. Secretion of mediators can occur utilizing different 
signaling [20,221–223] and secretory [221,223] pathways. 
Interestingly, a circadian clock was reported to regulate IgE- 
dependent activation of murine bone marrow-derived mast 
cells [114,286,287].

7. Treatment approaches of mast cell-mediator- 
induced disorders

There are still no clinically effective inhibitors of mast cell activa-
tion (‘mast cell stabilizers’) [16,23,288,289]. Biologics have been 
used [17,290], mostly aiming at neutralizing the effect of IgE in 
urticaria with the use of omalizumab [291,292]. A number of 
inhibitors of tyrosine kinase (KIT) have been developed to block 
mast cell proliferation [293–295], but most of these drugs do not 
inhibit mast cell activation [296,297]. New approaches target the 
putative inhibitory receptor (Siglec-8) [17,298,299]. Disodium 
cromoglycate (cromolyn) is known as a ‘mast cell stabilizer’ 
because it had originally been shown to inhibit histamine release 
from rat peritoneal mast cells [237]. However, cromolyn does not 
effectively inhibit either mouse [300] or human [301] mast cells.

Minimizing exposure to potential triggers (e.g. allergens, 
foods, heat, stress) is clearly important. If there allergy to food 
antigens [302,303] or histamine intolerance is present [304], 
supplementation with the main histamine metabolizing enzyme, 
diamine oxidase (DAO) [305] shortly before meals could be 
beneficial especially if its activity is low or there is the presence 
of gene polymorphisms. The initial treatment approach is the use 
of second-generation, H-1 antihistamines up to 4 times the 
recommended doses as tolerated [306–310]. Unique among 
these, is the histamine-1 receptor antagonist rupatadine, which 
was specifically developed to have potent anti-PAF activity [311]. 
Rupatadine is not available in the US although it has been 
available in Europe for over 20 years and in Canada since about 
2000 (Canadian online pharmacies will send it with a US pre-
scription). Rupatadine at 40 mg/day is well tolerated and inhibits 
histamine- and PAF-induced flares and ex vivo platelet aggrega-
tion in normal male subjects [312]. When compared to other 
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second second-generation H-1 antihistamines in chronic urti-
caria, 20 mg/day of rupatadine showed the greatest efficacy in 
the treatment of CSU (71.6%) as compared to 20 mg/day of 
desloratadine (50%), and 20 mg/day of levocetirizine (21.7%) 
Notably, rupatadine also inhibited histamine and TNF release 
from human mast cells in response to PAF [256], and the release 
of histamine and IL-6 from human mast cells was stimulated by 
different triggers [313]. Rupatadine, unlike desloratadine and 
levocetirizine, also inhibited the PAF-induced release of hista-
mine from human mast cells [314].

The first-generation H1 anti-histamine-1 ketotifen has been 
promoted as a mast cell inhibitor, but the evidence is weak 
[315,316] and it is associated with fatigue and weight gain.

Addition of H2- antihistamines may have additional bene-
fits as cimetidine [317], ranitidine [318], and famotidine [319] 
have been reported to also inhibit rat mast cells. Interestingly 
human leukemic (HMC-1) and human skin mast cells primarily 
express H2 receptors [320].

Increasing evidence supports the premise that Vitamin D has 
immunoregulatory actions in general [321]] and mast cell inhi-
bitory functions in particular [322]. Specifically, vitamin D was 
reported to regulate IgE production [323] and inhibit IgE- 
dependent mast cell activation via specific vitamin D metabo-
lites [324] and also inhibit ultraviolet B (UVB) irradiated skin 
mast cells [325]. Even though the precise mechanism is not 
known, the beneficial action of vitamin D may involve increased 
expression of the vitamin D receptor (VDR) receptor and inhibi-
tion of Lyn binding to FceRI [326]. Vitamin D may also be 
important in inhibiting IL-33-associated mast cell activation as 
it was shown to enhance the production of soluble ST2 (IL- 
33sr), thus inhibiting the availability and action of IL-33 [327].

Certain naturally occurring flavonoids, commonly found in 
fruits, green plants and seeds, have potent antioxidant and 
anti-inflammatory properties [328,329]. Among these, the fla-
vone luteolin stands out because it significantly inhibits the 
activation of both mast cells [301,330] and the brain macro-
phages, and microglia [331–334]. The novel luteolin structural 
analogue tetramethoxyluteolin (methoxyluteolin) is an even 
more potent inhibitor than luteolin [210,301,330,334] and 
has been incorporated into a skin lotion. Flavonoids have 
also been reported to modulate the synthesis of PAF [335], 
which has been strongly implicated in COVID-19 [336]. 
Luteolin especially formulated in olive pomace oil [337] to 
increase absorption may not only inhibit mast cell activation 
but also prevent neuroinflammation [338–341], is neuropro-
tective [338,342–344] and could reduce cognitive dysfunction 
[345–349], especially brain fog [350–352], the main complaint 
of many patients with MCADs [269,353]. However, data from 
controlled clinical trials are still lacking.

8. Conclusions

Mast cells play a critical role in atopic diseases [39], especially 
allergies [19] and anaphylactic reactions [2,39,354], but also in 
inflammation [2;44;202;204;205]. Symptoms associated with mast 
cell activation are numerous and can affect all organs making the 
presentation of patients confusing and diagnosis challenging. 
Symptoms may derive from numerous mediators released from 
mast cells other than histamine and tryptase necessitating a better 

definition of mast cell activation. Early diagnosis and appropriate 
intervention, along with stress reduction, could minimize mast cell 
reactivity and improve quality of life.

9. Expert opinion

Great advances have been made in the potential treatment of 
the MCAD variant aggressive systemic mastocytosis.

There have been few advances in the development of better 
diagnostic panels for mast cell activation. Potential useful new 
serum biomarkers that would need to be validated could include 
CRH, eosinophil cationic protein (ECP), IL-6, MMP-9, neurotro-
phins, osteopontin [355,356], PAF, SP [357], as well as VEGF and 
other angiogenic factors [208,213,214,355,356,358]. Elevated 
serum levels of the nonspecific mast cell surface receptor 
MRGPRX2 may also be useful [359].

The ultimate goal should be better diagnosis and treatment of 
mast cell activation, especially in response to non-allergic triggers.

There should be directed funding toward better phenotyp-
ing of mast cells, especially in different conditions, developing 
useful biomarker panels for diagnosis of MCAS understanding 
the mechanism of selective mediator release without degra-
nulation, and identifying ways to regulate mast cell reactivity 
and activation.

Critical for advancing the field is the availability of cultured 
primary human mast cells since the closest source so far is still 
immortalized leukemic mast cells [360] and since bone mar-
row-derived mast cells do not necessarily reflect the tissue 
mast cell phenotype [361].

Human organoids [362] with mast cells and other tissue 
cells (e.g. endothelial cells, fibroblasts, T cells, and brain cells) 
should be developed to mimic specific tissue environments 
and mast cell phenotype differentiation.

Brain mast cells should be studied as they may be involved 
in neurodevelopmental and neuroinflammatory conditions 
[76,245,363], especially since brain mast cells may not express 
FceRI [364] but are able to release TNF [278] in response to 
other triggers.

Better research and education on aspects of mast cell 
activation-related diseases and their treatment, as well as 
increased communication among health professionals, is 
important in order to diagnose and treat MCADs [365].
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