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Abstract
CRH and its structurally related peptide urocortin (Ucn) are released under stress. Ucn is a potent agonist for CRH-

receptor 2 (CRH-R2), which is strongly expressed in rodent heart. Stress induces Ucn mRNA expression in the heart,

where it may be cardioprotective. However, increasing evidence indicates that Ucn may also have pro-inflammatory

actions. Here, we show that neonatal rat cardiomyocytes express CRH-R2 by western blot analysis and Ucn induces

interleukin-6 (IL-6) release in a time- and dose-dependent fashion. Ucn stimulates activation of ERK and p38 MAP

kinases, while both MEK1 and p38 inhibitor block Ucn-induced IL-6 release. Ucn also activates nuclear factor kappa B

(NF-kB) and a NF-kB inhibitor blocks Ucn-induced IL-6 release. Finally, the CRH-R antagonists a-helical (9–41) CRH and

astressin-2B completely inhibit Ucn-induced IL-6 release, as well as activation of ERK, p38, and NF-kB. These findings

indicate that Ucn induces IL-6 synthesis and release from neonatal rat cardiomyocytes. Our findings suggest that even

though Ucn may confirm some protection on cardiomyocyte survival, it can also release IL-6, which is an independent risk

factor for acute coronary syndrome. The precise role of cardiac Ucn in vivo remains to be elucidated.
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Introduction

The stress response is regulated by CRH, which activates
the hypothalamic–pituitary–adrenal (HPA) axis typi-
cally leading to anti-inflammatory actions (Chrousos
1995). There are two main types of the G protein-
coupled CRH receptors, CRH-receptor 1 (CRH-R1),
and CRH-R2, which mediate the effects of the CRH
family of structurally related peptides that includes
CRH, urotensin, sauvagine, and the urocortins (Ucn).
Ucn binding to CRH-R2 is about 40 times more potent
than for CRH itself. CRH-R1 is mainly expressed in the
central nervous system (CNS) and anterior pituitary
corticotrophs, activation of which leads to release of
adrenocorticotropic hormone (Chrousos 1995).
CRH-R2 has three different spliced forms, a, b, and g,
of which CRH-R2a is mainly in the CNS, while CRH-R2b
is predominantly found in the periphery, especially in
the heart (Nishikimi et al. 2000, Kimura et al. 2002)
including cardiomyocytes (Okosi et al. 1998). Ucn
mRNA is also expressed in the heart (Nishikimi et al.
2000). Species differences have been reported in the
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distribution of CRH-R2 in the cardiovascular system,
showing 10! higher expression in mice than rats or
humans cardiac muscle (Waser et al. 2006).

Ucn has been generally considered to be cardiopro-
tective, especially in ischemia-reperfusion (IR) injury
(Bale et al. 2003, Latchman 2003, Townsend et al. 2007),
but is also increased (Nishikimi et al. 2000, Ikeda et al.
2003) with parallel decrease in cardiac CRH-R2b
expression in cardiac hypertrophy (Nishikimi et al.
2000, Ikeda et al. 2003). On the other hand, acute stress,
CRH, and Ucn have been implicated in the pathophy-
siology of some neuroinflammatory disorders
(Chrousos 1995, Karalis et al. 1997, Theoharides &
Cochrane 2004) and myocardial ischemia (MI; Jiang
et al. 1996, Krantz et al. 2000). Acute stress elevates
plasma interleukin-6 (IL-6) levels in rodents (Ando et al.
1998, Nukina et al. 2001) and such levels are higher in
apolipoprotein E (Apo E) knockout mice that develop
atherosclerosis (Huang et al. 2003).

Local inflammation is now recognized as a key
component of coronary artery disease (CAD; Packard
& Libby 2008). The proinflammatory cytokine IL-6 is
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thought to contribute to the development of CAD
(Huber et al. 1999), cardiomyopathy, congestive heart
failure (Deliargyris et al. 2000) and MI (Miyao et al. 1993).
IL-6 is a major inducer of C reactive protein (CRP) and
both are elevated in and are associated with increased
risk of CAD. The Health ABC study showed that
plasma IL-6 levels had a stronger association with CAD
than CRP (Cesari et al. 2003), while the PRIME study
showed that only IL-6 remained significantly associated
with MI (Luc et al. 2003). In another study, the
incidence of future acute coronary events and mortality
of patients with stable CAD or healed MI was strongly
correlated with serum IL-6 levels over a 6-year
observation (Fisman et al. 2006). In patients with
acute coronary syndrome (ACS), plasma IL-6 was
increased and appeared to derive primarily from a
cardiac source (Deliargyris et al. 2000), but the exact
cell type remains known. Cardiomyocytes are capable of
releasing IL-6 in response to hypoxia and to cytokines
(Yamauchi-Takihara et al. 1995, Coste et al. 2001).

Here, we show for the first time that neonatal rat
cardiomyocytes express CRH-R2 protein and secrete
IL-6 in response to Ucn through the activation of CRH-
R2 and subsequently MAP kinases and nuclear factor
kappa B (NF-kB).
Materials and methods

Culture of neonatal rat cardiomyocytes

This protocol was approved by the Institutional Animal
Care Committee. Ventricular cardiomyocytes were
isolated from the hearts of 1–3-day old neonatal male
Sprague/Dawley rats (Charles River Laboratories, Inc.,
Wilmington, MA, USA) using the Neonatal Cardiomyo-
cyte Isolation System (Worthington Biochemical
Corporation, Lakewood, NJ, USA). Cardiomyocytes
were enriched by preplating for 60 min to allow the
non-myocytes to adhere to the plate. Non-adherent
cardiomyocytes were then removed by aspiration and
plated in DMEM/F-12 (Gibco) supplemented with
5% fetal bovine serum (Hyclone, Logan, UT, USA),
10% horse serum (Sigma), 1% penicillin/streptomycin
(Gibco), 20 mM vitamin B12 (Sigma) at 37 8C in 95% air
5% CO2. For the first 3 days of culture, 0.1 mM
5-bromo-2 0-deoxyuridine (BrdU, Sigma) was added to
the medium to prevent proliferation of non-myocytes.
The culture medium was changed 40–48 h following
seeding, to serum depleted medium: DMEM/F-12
supplemented with 1! insulin-transferrin-selenium
(Gibco), 0.5% penicillin/streptomycin, 1% fetal bovine
serum and 20 mM vitamin B12; cardiomyocytes remained
in this medium for 24 h before further experiments.
All cells in culture were seen beating spontaneously,
indicative of cardiomyocytes. Ucn is expressed in cells
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of the immune system (Karalis et al. 1997) including
mast cells (Kempuraj et al. 2004).

We stained the cardiomyocytes with 1% toluidine
blue solution (pH !2) for mast cells and with Giemsa
stain for lymphocytes in the final cardiomyocyte
preparation. Electron microscopy confirmed the
absence of any fibroblasts or endothelial cells (data
not shown).
IL-6 measurements

Time-course and dose-response studies of Ucn-stimu-
lated IL-6 release from cardiomyocytes were conducted.
Cells were either treated with 100 nM Ucn for different
periods of time (0–72 h), or treated with different
concentrations of Ucn (0–10 mM) for 48 h; following
stimulation, the culture medium was collected and was
assayed for IL-6 using the quantitative sandwich enzyme
immunoassay technique (R&D).
Cyclic AMP assays

Cardiomyocytes were incubated in serum-free culture
medium containing 100 nM Ucn for the designated
times and cAMP was measured with an ELISA kit (R&D)
as previously described (Heldwein et al. 1996).
Western blot analysis

For the detection of CRH-R2, heart tissue and isolated
cardiomyocytes were disrupted in ice-cold lysis buffer
(50 mM Tris pH 8.0, 150 mM NaCl, 0.1% SDS, 0.02%
sodium azide, 1% NP-40, 0.5% sodium deoxycholate,
100 mg/ml PMSF, and 1 mg/ml aprotinin) and were
then centrifuged at 15 000 g for 15 min at 4 8C. For the
detection of phosphorylation of MAP kinases, cardio-
myocytes were exposed to 100 nM Ucn in the presence
or absence of inhibitors for the indicated time, after
which the cells were lysed in lysis buffer, vortexed, and
centrifuged at 15 000 g for 15 min at 4 8C. Aliquots of
tissue and cell lysates were kept for protein estimation
(Bio-Rad). An equal amount of protein from each
sample was mixed with an equal volume of 3X SDS
sample buffer. The samples were boiled for 3 min and
proteins were subjected to electrophoresis on a 10%
SDS-polyacrylamide gel, subsequently transferred onto
the PVDF membrane (Immobilon-P) by the semi-dry
method (BioRad). The membrane was then blocked
with 5% dry milk in PBS containing 0.05% Tween-20
(PBS-T) and probed for 2 h at room temperature with
two different rabbit polyclonal anti-CRH-R2 antibodies
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) and
(Imgenex, San Diego, CA, USA) or an antibody that
detects phospho-ERK and phospho-p38 (Cell Signaling
Danvers, MA, USA). For the detection of total ERK
www.endocrinology-journals.org
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and p38, the membrane was probed for 1 h at room
temperature with either an anti-ERK1 antibody or an
anti-p38 antibody. The membrane was washed in PBS-T
and incubated with a HRP-conjugated secondary
antibody (Santa Cruz) for 1 h. The immunoreactive
bands were visualized by enhanced chemiluminescence
(ECLJ).
Electromobility gel shift assays

The nuclear extract of cardiomyocytes was collected as
previously described (Li et al. 2001). The consensus
NF-kB oligonucleotide (AGTTGAGGGGACTTTCC-
CAGGC, Santa Cruz) was radiolabeled by mixing
50 ng oligonucleotide, 70 mCi [g-32P] ATP, 1 ml T4
polynucleotide kinase, 1.5 ml 10!T4 polynucleotide
buffer and double-distilled water in a 15 ml reaction
volume. The nuclear extract protein (10 mg) was then
mixed with 0.5 ng [g-32P] ATP-labeled NF-kB
oligonucleotide, 20 mg BSA, 2 mg pdI-dC, 2 ml Buffer
DC(20 mM Hepes pH 7.9, 20% glycerol, 100 mM KCl,
0.5 mM EDTA, 0.25% NP40), 4 ml Buffer F (20%
FICOLL 400, 100 mM Hepes pH 7.9, 300 mM KCl),
and DTT (2 mM) in 20 ml total volume at room
temperature for 20 min. At the end of the reaction,
the mixture was loaded on a non-denaturing 4%
polyacrylamide gel using a running buffer containing
50 mM Tris pH 7.5, 0.38 M glycine, and 2 mM EDTA,
after which the gel was dried and exposed to Kodak
X-ray film for autoradiography at K80 8C.
Drug pretreatment

Cardiomyocytes were pretreated with the p38 MAP
kinase inhibitor SB203580 (10 mM) or the MEK1
inhibitor PD98059 (20 mM) 1 h before Ucn treatment.
The NF-kB inhibitor pyrrolidine dithiocarbamate
(PDTC) was added at 50 mM to the culture medium
2 h before Ucn treatment. The peptide CRH-R
antagonists a-helical (9–41) CRH or astressin-2B
(10 mM) were added 1 h before Ucn treatment. The
optimal concentrations and the duration of pretreat-
ment for all the inhibitors used were predetermined by
time- and dose-response experiments (not shown). All
concentrations of the different inhibitors used in these
experiments have been previously shown not to be toxic
to cardiomyocytes; moreover, the viability of the
cardiomyocytes was intact, as they were still beating
and Trypan blue exclusion was minimal at 48 h.
Figure 1 Time- and dose-dependent effect of Ucn on IL-6 release
from cardiomyocytes. (A) Cells were stimulated with 100 nM Ucn
in serum-free medium for the designated length of time (0–72 h).
(B) Cells were treated with different concentrations of Ucn
(0–10 mM) for 48 h (nZ6; *P!0.05).
Statistical analysis

Each experiment was performed at least four times
unless stated otherwise. The differences between
unstimulated and stimulated cells were compared
www.endocrinology-journals.org
using both the two-tailed Student’s t-test and the non-
parametric Mann–Whitney U-test; comparison between
different treatment groups was performed by ANOVA
using one-way ANOVA. Results are presented as
meanGS.E.M. For all analyses, P!0.05 was considered
to indicate statistical significance.
Results

Time- and dose-dependent increase of IL-6 release by
urocortin

Ucn increased IL-6 release from isolated cardiomyo-
cytes in a time- and dose-dependent fashion. Significant
increase of IL-6 release was observed as early as 4 h of
Ucn (100 nM) exposure. Ucn produced 15.5G
0.5 pg/ml of IL-6 as compared with 7.1G1.4 pg/ml
from unstimulated cells (Fig. 1A, nZ6, P!0.05). The
Ucn-induced IL-6 release increased with time and
maximal release was observed at 48 h of stimulation
when Ucn treated cells produced 120.2G9.5 pg/ml as
Journal of Molecular Endocrinology (2009) 42, 397–405
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compared with 59.1G7.2 pg/ml of IL-6 from untreated
cells (Fig. 1A, nZ6, P!0.05). Unstimulated cells also
released more IL-6 over time, but the difference
between them and the treatment group remained
significant at every time point (Fig. 1A). Ucn-induced
IL-6 release from cardiomyocytes was also dose-depen-
dent. When cells were treated with different concen-
trations of Ucn for 48 h, 10 nM was the lowest
concentration of Ucn that could stimulate significant
IL-6 increase of 83.5G5.5 pg/ml versus 59.1G7.2 pg/ml
in controls (Fig. 1B, nZ6, P!0.05). Maximal IL-6
release of 148.3G8.1 pg/ml was induced by 1 mM of
Ucn (Fig. 1B, nZ6, P!0.05); higher Ucn concen-
trations (10 mM) did not increase IL-6 release any
further (152.0G6.1 pg/ml, Fig. 1B, nZ6).
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Figure 2 Western blot analysis of CRH-R2 in rodent hearts and
isolated neonatal rat cardiomyocytes. (A) Mouse heart with rat
cortex homogenates included as a positive control. (B) Mouse
heart, rat heart homogenates, and rat cardiomyocytes (A & B
using anti-CRH-R2 from Santa Cruz, CA, USA). (C) Rat
Presence of CRH-R2 in cardiomyocytes

Western blot analysis using anti-CRH-R2 antibodies
from two different sources demonstrated the presence
of a strong immunoreactive band of about 49 kDa in
mouse and rat heart, as well as in neonatal rat
cardiomyocytes (positive controls included rat cortex
and cerebellum; Fig. 2A–C). Use of a blocking peptide
for CRH-R2 abolished immunoreactivity, while one for
CRH-R1 had no effect (data not shown). There was
no CRH-R1 expression noted (data not shown). In
order to investigate whether the CRH-R2 on cardio-
myocytes is functional, cellular cAMP levels were
measured following Ucn stimulation, since CRH and
related peptides typically bind to CRH-R and activate
adenylate cyclase. Production of cAMP increased
significantly by 3.4G0.2-fold above basal levels after
2 min of stimulation with 100 nM Ucn, reaching a
maximum of 6.9G0.2-fold above basal level (nZ6,
P!0.05) at 5 min, and then decreased slowly over time,
but still remained 5.3G0.1-fold above basal values at
20 min (results not shown).
cardiomyocytes with rat cortex and cerebellum as positive
controls using a rabbit polyclonal anti-CRH-R2 antibody from
Imgenex (San Diego). Representative gels (nZ3). The amount of
protein loaded for this gel was about 1/5th of gels shown in Fig. 2A
and 2B due to limited availability of cardiomyocyte material.
Urocortin activates ERK and p38 MAP kinases

In order to study the possible mechanism(s) by which
Ucn stimulates IL-6 release, we investigated the effect of
Ucn on the phosphorylation of MAP kinases, including
ERK and p38. Cardiomyocytes responded to 100 nM
Ucn with the activation of both ERK and p38.
Phosphorylation of ERK (p44/42) was observed at
2 min and was maximized at 5 min after which it
decreased over time, but remained above basal level up
to 1 h (Fig. 3A).

The peptide CRH-R inhibitor astressin completely
reversed the effect of Ucn (100 nM for 15 min) on ERK
activation (Fig. 3A). Pretreatment with PD98059
(200 nM for 1 h), the specific inhibitor of MEK1,
which is the upstream stimulator of ERK, also
Journal of Molecular Endocrinology (2009) 42, 397–405
completely inhibited the phosphorylation of ERK.
The specific inhibitor of p38 MAP kinase SB203580
(100 nM) had no apparent effect on ERK activation
(Fig. 3A). There was no difference in total ERK between
control samples, the positive control stimulated by
IL-1b and Ucn (Fig. 3A, lower panel).

Phosphorylation of p38 MAP kinase occurred later
than that of ERK (Fig. 3A and B); there was a moderate
increase of p38 phosphorylation observed at 15 min of
Ucn exposure (Fig. 3B). Both CRH-R antagonists,
a-helical (9–41) CRH and astressin completely
www.endocrinology-journals.org



AUTHOR COPY ONLY

Phospho-p44

Ucn 100nM

Ucn 100 nM

Ucn 100 nM

Ucn 100 nM

C
on

tr
ol

C
on

tr
ol

C
on

tr
ol

C
on

tr
ol

2
m

in
2

m
in

5
m

in
5

m
in

10
m

in
10

m
in

15
m

in

15
m

in

15
m

in

15
m

in

IL
-1

β

30
m

in

30
m

in

30
m

in

30
m

in

1 
ho

ur

1 
ho

ur

1 
ho

ur

2 
ho

ur

1 
ho

ur

2 
ho

ur
S

B
20

35
80

 +
 U

cn

P
D

98
05

9 
+

 U
cn

A
st

re
ss

in
 +

 U
cn

S
B

20
35

80
 +

 U
cn

P
D

98
05

9 
+

 U
cn

A
st

re
ss

in
 +

 U
cn

α-
he

lic
al

 C
R

H
 +

 U
cn

Phospho-p42

Phospho-p38

ERK1

p38

A

B

Figure 3 Effect of Ucn on phosphorylation of MAP kinases by
western blot analysis. (A) Phosphorylation of ERK and effects of
the peptide CRH-R antagonist astressin (10 mM), as well as the
specific inhibitor of p38 MAP kinase SB203580 (10 mM) and the
specific inhibitor of MEK1 PD98059 (20 mM) for 1 h (upper panel);
total ERK was detected using an antibody to ERK1 and remained at
the same level in unstimulated cells, those treated with IL-1b
(10 ng/ml for 10 min) or Ucn-treated cells. (B) Phosphorylation of
p38 MAP kinase and effects of a-helical (9–41) CRH and astressin,
as well as SB203580 and PD98059 (upper panel); total p38
remained at the same level (lower panel) in both unstimulated cells
and Ucn-treated cells (representative gel from nZ5; *P!0.05).
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inhibited Ucn (100 nM for 15 min)-induced phos-
phorylation of p38. Since SB203580 inhibits the down-
stream signaling pathway of p38, it did not inhibit the
phosphorylation of p38 itself (Fig. 3B); as expected, the
MEK1 inhibitor PD98059 did not inhibit p38 phos-
phorylation either (Fig. 3B). The total p38 remained
the same in Ucn-stimulated and unstimulated cells
(Fig. 3B lower panel).
Urocortin activates NF-kB

There was moderate activation of NF-kB after Ucn
treatment (100 nM, 15 min to 6 h duration), as shown
by gel-shift assay (Fig. 4A). Both a-helical CRH (9–41)
www.endocrinology-journals.org
and SB203580 completely inhibited Ucn (100 nM for
15 min)-induced NF-kB activation (Fig. 4A), suggesting
that the activation of NF-kB in cardiomyocytes is
mediated by CRH-R and is dependent on p38
phosphorylation. Pretreatment with PD98059 (20 mM
for 1 h) unexpectly did not have any effect on NF-kB
activation. Supershift assay using an antibody against
the p50 subunit of NF-kB confirmed that the Ucn-
stimulated increase in binding resulted from NF-kB
activity in the nuclear extracts of Ucn-treated cells
(Fig. 4B).
Urocortin increases IL-6 release by a CRH-R2-induced
MAP kinase- and NF-kB-dependent mechanism

In order to determine whether Ucn-induced IL-6
release from cardiomyocytes involves MAP kinases or
NF-kB activation, cardiomyocytes were pretreated for
1 h before Ucn (100 nM) stimulation with either the
p38 MAP kinase inhibitor SB203580 (10 mM) or the
MEK1 inhibitor PD98059 (20 mM). Otherwise, cardio-
myocytes were pretreated with the NF-kB inhibitor
PDTC (50 mM) for 2 h before Ucn addition. As shown
in Fig. 5A, both SB203580 and PD98059 completely
inhibited Ucn-induced IL-6 release, indicating that
both p38 and ERK are involved in Ucn-stimulated IL-6
release from cardiomyocytes. PDTC (50 mM for 1 h)
also completely inhibited IL-6 release stimulated by
Ucn, further indicating the involvement of NF-kB. Both
a-helical CRH (9–41) and astressin (100 nM)
completely inhibited Ucn-induced IL-6 release
(Fig. 5B), confirming that Ucn exerts its effect on IL-6
release through the activation of CRH-R.
Discussion

Here, we show for the first time that Ucn stimulates IL-6
release from neonatal rat cardiomyocytes. CRH-R2
appears to be involved, since it is identified in cardiac
tissue and in isolated cardiomyocytes by immuno-
blotting, and the release of IL-6 is blocked by
astressin-2B. CRH-R2 was detected by antibodies from
two different sources, using rat cortex and cerebellum
as positive controls. The same Santa-Cruz antibody used
here was previously reported to be specific (Bishop et al.
2006), and also identified a band around 49 kDa.
Moreover, the western blot with the second anti-CRH-
R2 antibody from Imgenex also generated a band
around 49 kDa, as shown in the product specification.
A similar molecular weight band is also recognized by
one more anti-CRH-R2 antibody (data not shown) by
Novus Biologicals (Littleton, CO, USA; www.novusbio.
com/data_sheet/index/NB100-56485). Some authors
have reported the molecular weight for the full length
CRH-R2 to be about 70 kDa in the pituitary, but lower in
Journal of Molecular Endocrinology (2009) 42, 397–405
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the brain (Grigoriadis & De Souza 1988); the 49 kDa
band may represent a CRH-R2 form that may be
truncated, with less glycosylation, or a tissue specific
variant.

Ucn and CRH-R2a mRNA expression has been
detected in cardiac tissue with CRH-R2b predominantly
expressed in the left ventricle (Kimura et al. 2002).
CRH-R2 protein expression was shown by
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autoradiography using a specific radiolabeled anti-
CRH-R2 ligand to be very high in rodent heart, with
very little CRH-R1 detected (Waser et al. 2006). CRH-R2b
mRNA expression was depressed in left ventricular
hypertrophy, possibly through downregulation by Ucn
(Nishikimi et al. 2000). Restraint stress upregulated Ucn
mRNA, but decreased CRH-R2b mRNA levels in the rat
heart and aorta (Pournajafi et al. 2003). CRH-R2 mRNA
expression was also downregulated by IL-1 and TNF in
the mouse heart (Coste et al. 2001), possibly acting to
limit the inotropic and chronotropic effects of Ucn.

Ucn II was shown to stimulate rat neonatal cardio-
myocytes to release atrial nitriuretic peptide in a
CRH-R2 and cAMP-dependant manner (Ikeda et al.
2005). Ucn mediates stress-induced IL-6 release in vivo
and administration of Ucn causes elevation of plasma
IL-6 in rats (Ando et al. 1998). Ucn also stimulates IL-6
secretion from human peripheral mononuclear cells
in vitro (Kohno et al. 2001), as well as an increase in IL-6
mRNA levels through CRH-R2 in rat aortic smooth
muscle cells (Kageyama et al. 2007).

Our study demonstrates that IL-6 release by Ucn
involves p38 MAP kinase, ERK and NF-kB activation.
Our results are consistent with a previous study that
showed p38 MAP kinase activation by Ucn, but not
CRH, in cultured human pregnant myometrial cells
(Grammatopoulos et al. 2000), as well as NF-kB involve-
ment in TNF-induced IL-6 expression and release from
cardiomyocytes (Craig et al. 2000) and upregulation of
inflammatory IL-6 expression (TNF-a, IL-1 and IL-6)
in cardiomyocyte hypertrophy (Purcell et al. 2001).
Surprisingly, our results show that while Ucn-induced
IL-6 release requires NF-kB activation, Ucn-induced
NF-kB activation does not appear to require ERK. This
discrepancy may indicate that ERK1/2 contributes to Ucn
stimulation of IL-6 production independent of NF-kB.
www.endocrinology-journals.org
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The role of Ucn in the heart is far from clear. Ucn
protects the rat heart from IR injury in vitro and in vivo
through upregulation of the p42/p44 MAPK pathway
(Schulman et al. 2003). Ucn-II and Ucn-III are also
cardioprotective against IR injury (Brar et al. 2004,
Woodcock 2004). Stimulation of CRH-R2b by Ucn-II
and III resulted in cAMP-independent ERK1/2 phos-
phorylation during IR and reduced infarct size (Brar
et al. 2004). Both Ucn (Brar et al. 2000) and IL-6 (Craig
et al. 2000) may protect neonatal rat cardiomyocytes
from apoptosis induced by hypoxia. However, while i.v.
administration of Ucn-II had inotropic and chrono-
tropic effects in mice and humans, it decreased blood
pressure, effects absent in CRH-R2 knockout mice (Bale
et al. 2004, Davis et al. 2007). Ucn-II also decreased mean
arterial blood pressure in the rat, which was blocked by
the CRH-R2 antagonist anti-sauvagine without any
effect on normal cardiac function (Mackay et al.
2003). Ucn is released before and independently of
cardiomyocyte death (Knight et al. 2008) and could
have proinflammatory actions (Chrousos 1995)
through a mechanism that involves mast cells
(Theoharides et al. 2004) as in allergic asthma (Wu
et al. 2006), and in intestinal inflammation (Kokkotou
et al. 2006, Wu et al. 2006) in rats.

Cardiomyocyte-derived IL-6 in response to Ucn may
even have dual and opposing actions. It might
originally lead to inhibition of apoptosis, but even-
tually to hypertrophy alone or following angiotensin II
(Sano et al. 2000). In macrophages, both CRH-R1 and
CRH-R2 agonists have an early anti-inflammatory, but
delayed pro-inflammatory effect on TNF-a release
(Tsatsanis et al. 2007). The particular effects of Ucn
may depend on the stage of maturation of the
cardiomyocytes and/or activation of specific CRH-R2
isoforms, documented in keratinocytes (Pisarchik &
Slominski 2004) and mast cells (Cao et al. 2005). For
instance, a soluble CRH-R2a isoform was shown to
neutralize the effect of CRH-R agonists (Chen et al.
2005), while Ucn mRNA antisense transcripts have
been identified in rat tissue (Shi et al. 2000).

Acute stress is implicated in cardiovascular pathology
(Theoharides & Cochrane 2004), especially in eliciting
MI in patients with CAD (Jiang et al. 1996). Acute stress
elevates plasma IL-6 levels in rodents (Ando et al. 1998,
Nukina et al. 2001) and such levels are higher in
ApoE knockout mice that develop atherosclerosis
(Huang et al. 2003). IL-6 plays a crucial role in MI
(Miyao et al. 1993), CAD (Huber et al. 1999), cardiac
hypertrophy (Sano et al. 2000), and congestive heart
failure (Deliargyris et al. 2000). IL-6 expression is also
increased in coronary arteries of aged rats that are
more prone to atherosclerosis and CAD (Cesari et al.
2003). The importance of inflammation including
IL-6 and its stimulation of CRP production in athero-
sclerosis was reviewed recently (Packard & Libby 2008).
www.endocrinology-journals.org
Elevated intracoronary levels of IL-6 (Deliargyris et al.
2000) shown in patients with acute CAD may also be
involved in coronary hypersensitivity leading to Kounis
syndrome (Kounis et al. 2007). Consequently, any
suggestion that Ucn peptides could be used thera-
peutically for heart conditions may be too premature.
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