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ABSTRACT

Interleukin-33 (IL-33) belongs to the IL-1 family of cytokines.
Whereas IL-1 is processed and released by live immune cells in
response to infection or other triggers, IL-33 is mostly released
as a danger signal (“alarmin”) from damaged cells. IL-33 may
also be processed and released from activated mast cells (MCs)
with subsequent autocrine and paracrine actions. IL-33 aug-
ments the stimulatory effects of IgE and substance P on MCs
but can also trigger release of cytokines from MCs on its own.
Blood IL-33 levels are increased in asthma, atopic dermatitis,

multiple sclerosis, rheumatoid arthritis, and Sjoégren’s syndrome.
However, prolonged elevation of IL-33 downregulates Fc«Rl and
may be protective in atherosclerosis, suggesting different roles
in immune-regulated diseases. Even though neutralizing IL-33,
knocking-down its receptor, or using its soluble “decoy”
receptor has resulted in anti-inflammatory effects, there appear
to be different outcomes in different tissues. Hence, selective
regulation of IL-33 synthesis, release, and signaling may be
required to provide effective treatment options.

Introduction

Interleukin-33 Structure and Function. There are 11
known members of the interleukin (IL)-1 family. IL-33 is
a new member of the IL-1 family that regulates innate and
adaptive immune systems to promote inflammatory responses
(Dinarello, 2009). 1L-33 is mainly expressed by keratinocytes,
epithelial and endothelial cells (Moussion et al., 2008), as well
as by human monocytes (Nile et al., 2010) and mouse astro-
cytes (Kempuraj et al., 2013). IL-33 acts as an alarmin against
injury-induced stress, pathogens, or cell death by activating
local immune cells (Lukens et al., 2012; Lunderius-Andersson
et al., 2012).

IL-1a and IL-1b are both synthesized in proforms and
require proteolytic cleavage for their activation and release
through what has been termed the NOD-like receptor family,
pyrin domain—containing 3 (NLRP3) “inflammasome”
(Schroder et al., 2010; Franchiand Nunez, 2012). The cysteine
protease caspase 1 must be cleaved and activated from its
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proform and it is then organized into the NLRP3 inflamma-
some (Schroder et al., 2010). Pro-IL-1a (31 kDa) must be
cleaved by caspase 1 to generate the active form (17 kDa)
(Arend et al., 2008), which is normally conserved within the
cell, mainly bound to the plasma membrane, or localized in
the nucleus (Dinarello et al., 2012).

IL-33 is synthesized in its proform (30 kDa), but its
processing does not appear to involve the NLRP3 inflamma-
some (Schroder et al., 2010). In contrast, caspase-1 cleaves
pro—IL-33 into an inactive form (Cayrol and Girard, 2009).
Moreover, unlike pro-IL-la, the proform of IL-33 is bi-
ologically active and also contains nuclear localization
sequences (like pro-IL-1a) allowing it to act both as an
intracellular nuclear factor and as an extracellular cytokine
(Zhao and Hu, 2010). Proteases such as calpain, cathepsin G,
and elastase can cleave pro—IL-33 into more potent mature
forms (Lefrancais et al., 2012; Garlanda et al., 2013) (Fig. 1). It
was recently reported that chymase and tryptase secreted
from mast cells (MCs) can generate 1L-33 forms that are 30-
fold more potent than full-length IL-33 (Lefrancais, et al.,
2014).

IL-33 primarily induces the production of Th2-associated
cytokines (Dinarello, 2002) but can also activate CD8" cells

ABBREVIATIONS: AD, atopic dermatitis; CCL2, chemokine ligand 2; hBD2, human b-defensin 2; IFN, interferon; IL, interleukin; JNK, c-Jun
N-terminal kinases; MC, mast cell; MS, multiple sclerosis; NF-kB, nuclear factor-kB; NLRP3, NOD-like receptor family, pyrin domain—containing 3;
SCF, stem cell factor; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.
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Fig. 1. Diagrammaticrepresentation of the proposed steps for the activation and release of IL-33. (A) Damage-associated molecular patterns (DAMPSs),
IFN-g, and other triggers activate immune cells, including mast cells, torelease both active pro—IL-33 and active IL-33 extracellularly, where they act as
alarmins for other cells. (B) Pathogen-associated molecular patterns (PAMPs), ATP, and other environmental or innate triggers activate either NF-kB
directly or the inflammasome (NLPR3) to generate IL-1. In addition, NF-kB induces the synthesis of pro—IL-33, which is then acted upon by calpain and
elastase togenerate active IL-33. The vertical black line is meant to distinguish (A) from (B). IL-33 is mainly expressed by keratinocytes, epithelial and
endothelial cells, as well as by monocytes, mast cells, and astrocytes (the cell types are listed on the basis of the strength of the evidence). IL-33 is
involved in the pathogenesis ofa number of diseases that are listed in boxes with the colors of the rainbow meant to indicate the strength of the evidence.

IBD, inflammatory bowel disease; RA, rheumatoid arthritis.

(Villarreal and Weiner, 2014). IL-33 induces lymphoid
cell-mediated airway inflammation by also activating the
mammalian target of rapamycin (Salmond et al., 2012).

Despite IL-33 sharing the IL-1 receptor accessory protein
with other members of the IL-1 family that are known to
upregulate an inducible antimicrobial peptide human
b-defensin 2 (hBD2), IL-33 downregulates serum-induced
hBD2 in human primary keratinocytes; this finding may
explain the increased colonization rate of Staphylococcus
aureus seen in atopic dermatitis (AD) patients (Alase et al.,
2012). Interestingly, hBD2 has been reported to activate
human MCs (Subramanian et al., 2013).

Regulation of 1L-33 Expression. IL-33 expression is
induced by pathogen-associated molecular patterns and
environmental triggers (Lloyd, 2010). Interestingly, extracel-
lular ATP was reported to act as a sensor for airborne
allergens (Kouzaki et al., 2011). 1L-33 can also be induced by
triggers of Toll-like receptors (Zhang et al., 2011b) that are
also present on MCs and can be activated by bacterial and
viral DNA sequences, leading to release of different cytokines
(Abraham and St. John, 2010).

IL-33 and its surface receptor ST2 were upregulated by
interferon-g (IFNg) in keratinocytes derived from patients
with AD (Seltmann et al., 2013). Tumor necrosis factor (TNF),
but not IL-17, stimulates secretion of IL-33, which induces
expression of I1L-6, monocyte chemoattractant protein-1, and

vascular endothelial growth factor (VEGF) (Balato et al.,,
2012). However, it appears that the type of cytokines/
chemokines produced by IL-33 may depend on the particular
tissue since the extent and type of such mediators varies
between sensitized skin and asthmatic airways (Savinko
et al., 2013).

IL-33/ST2 Signaling. 1L-33 was discovered as a main
ligand to ST2 (I1L-1R4) receptor, which is mostly expressed on
the surfaces of epithelial cells, fibroblasts, and MCs (Liew
et al., 2010). The ST2 receptor is found in either the
transmembrane ST2L form, which is the more abundant
form, or in the cytoplasm as the soluble sST2 form, which may
be acting as a decoy by binding and neutralizing IL-33 (Liew
etal., 2010). The receptor complex comprises the ST2and IL-1
receptor accessory proteins (Chackerian et al., 2007). IL-33
bindingrecruits the IL-1R AcP coreceptor, the adaptor protein
MyDa88, along with the associated protein IL-1R kinase.

ST2 activation leads to stimulation of mitogen-activated
protein kinase via TNF receptor—associated factor 6, which
can signal activator protein-1 via c-Jun N-terminal kinases
(JNKSs). TNF receptor—associated factor 6 can also activate
nuclear factor-kB (NF-kB), resulting in its nuclear trans-
location and proinflammatory gene transcription (Kakkar and
Lee, 2008). ST2 activation of the chronic myelogenous
leukemia cell line, KU812, resulted in release of multiple
cytokines through stimulation of NF-kB, JNKs, and p38
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mitogen-activated protein kinase, but not extracellular
signal-regulated kinase 1/2; however, 1L-13 production in
these cells apparently did not require JNKs or extracellular
signal-regulated kinase 1/2 signaling (Tare et al., 2010). IL-33
can alsoact as a DNA binding factor (Kakkar and Lee, 2008).

IL-33 and Mast Cells. The effect of I1L-33 on MCs was
reviewed recently (Sabatino et al., 2012). ST2 is expressed on
MCs, for which it acts as a chemoattractant and augments the
effect of other triggers (Fux et al., 2014). MCs respond to cell
injury through 1L-33 (Lunderius-Andersson et al., 2012) and
have therefore been considered *“sensors of cell injury”
(Enoksson et al., 2011). A murine MC line (MC/9) was
reported to produce significant amounts of 1L-33 after
stimulation with IgE and antigen (Hsu et al., 2010). More
recently, bone marrow—derived cultured mast cells stimu-
lated by ovalbumin and specific IgE induced the expression
and release of 1L-33, which has autocrine action on IL-6 and
IL-13 expression (Tung et al., 2014).

MCs are hemopoietically derived cells located close to blood
vessels and nerves, where they proliferate primarily in
response to stem cell factor (SCF) (Galli et al., 1995) but also
nerve growth factor (Matsuda et al., 1991). MCs are important
for allergic reactions but also for mastocytosis, mast cell acti-
vation disorders, and other inflammatory diseases (Theoharides
et al,, 2015). IL-33 has also been reported to drive maturation
of human MCs (Allakhverdi et al., 2007) and promote MC
survival (likura et al., 2007). IL-33 promoted proliferation of
mouse mast cell independent of c-Kit (Saluja et al., 2014).
Nevertheless, 1L-33 was reported to cross-activate the SCF
c-Kit receptor on MCs (Drube et al., 2010). Evidently, IL-
1RACP interacts with c-Kit constitutively and IL-33R binds
upon stimulation with SCF leading to cytokine release (Drube
et al., 2010). Apparently, inhibition of c-Kit signaling also
blocked human MC release of IL-1b (Drube et al., 2012),
which had been shown to occur selectively without degranu-
lation (Kandere-Grzybowska et al., 2003).

IL-33 augmented the activating effect of IgE and SCF on
MC and basophils (Silver et al., 2010). IL-33 induced release
of proinflammatory cytokines, especially IL-6, without de-
granulation from bone marrow—derived MCs (Moulin et al.,
2007), and enhanced IL-8 production from human cord
blood—derived cultured mast cells stimulated by IgE/anti-
IgE, but without histaminerelease (likura et al., 2007). 1L-33
augmented human MC release of VEGF in response to
substance P, but not on its own (Theoharides et al., 2010).
Moreover, 1L-33 production of IL-13 independently of Fc«RI
stimulation (Hoet al., 2007) stimulated prostaglandin D, but
not tryptase, release from activated human MCs (Nicoletti
et al., 2012). 1L-33 was also able to prime murine MCs for
enhanced activation by IgG immune complexes (Drube et al.,
2010; Kaieda et al., 2012), and stimulated MC-dependent
neutrophil influx (Hueber et al., 2011; Enoksson et al., 2013).
In addition to activation through cross-linking of the high-
affinity IgE receptor (Fc«Rl) (Blank and Rivera, 2004), MCs
are alsostimulated by a variety of other triggers (Theoharides
et al., 2007), such as the neuropeptide neurotensin (Donelan
et al., 2006) and substance P (Zhang et al., 2011a).

MCs secrete numerous inflammatory mediators including
histamine; leukotrienes; prostaglandins and tryptase; cyto-
kines such as IL-6, IL-9, IL-13, TNF; chemokines like CCL2
and IL-8 (CXCL8); as well as VEGF (Theoharides et al.,
2012a). MCs are the only cell type in which preformed TNF is

stored in secretory granules (Olszewski et al., 2007) and
released bound to heparin particles that can reach draining
lymph nodes and contribute to inflammation (Kunder et al.,
2009). TNF can also activate T cells (Nakae et al., 2005;
Kempuraj et al., 2008). MC-derived IL-6 and transforming
growth factor-b are critical for the development of Th-17 cells
(Nakae et al., 2007; Suurmond et al., 2011), and MCs secrete
IL-17 themselves (Kenna and Brown, 2013).

IL-33 also augments the action of thymic stromal lympho-
poietin (Nakae et al., 2007), which may be acting as another
early immune alarmin through MCs (Kaur et al., 2012).

Functional and Pathologic Features of IL-33 in
Allergic Diseases

IL-33 is thought to contribute to disease pathology (Liew
et al., 2010), especially inflammatory (Dinarello, 2002;
Lukens et al., 2012; Milovanovic et al., 2012), allergic (Saluja
et al., 2015), and autoimmune (Pei et al.,, 2014) diseases,
through activation of MCs (Castellani et al., 2009).

Allergic Inflammation. There is substantial evidence
that IL-33 is involved in airway inflammation (Oboki et al.,
2011) and it appears to facilitate allergic airway responses to
subthreshold exposure to dust mites (Llop-Guevara et al.,
2014) and to ovalbumin in mice (Sjoberg et al., 2015). 1L-33
induced Th-17-mediated airway inflammation via MCs (Hsu
et al., 2010). In fact, there is evidence that IL-33 modulates
cross-talk between MCs and smooth muscle cells in human
airways (Kaur et al., 2015). Genetic polymorphism of ST2
and ST2L provides susceptibility for asthma development
(Moffatt et al., 2010). ST2L expression was significantly
increased in patients with severe asthma, and multiple single
nucleotide polymorphisms in IL1RL1 were found in these
patients (Traister et al., 2015).

IL-33 serum levels were significantly increased compared
with the control nonasthmatic individuals (Pushparaj et al.,
2009; Raeiszadeh et al., 2014). IL-33 was secreted from
human bronchial epithelial cells after stimulation with an
extract of Alternaria, a common fungus causing allergic
respiratory diseases (Lefrancais and Cayrol, 2012). IL-33 also
mediated maximum responses in allergen-induced airway
inflammation (Kamijo et al., 2013). IL-33 is also involved in
allergic rhinitis (Haenuki et al., 2012) and allergic conjunc-
tivitis (Lin et al., 2013).

Additional studies from rodent models support the role of
IL-33 in lung diseases (Eiwegger and Akdis, 2011; Kamijo
et al., 2013). Intranasal administration of IL-33 triggered an
immediate allergic inflammatory response in the airways,
which was absent in IL-33—deficient mice (Louten et al.,
2011). In another study, IL-33—deficient mice did not develop
sneezing (early) or accumulate eosinophils and basophils
(late) when challenged with ragweed pollen (Haenuki et al.,
2012). In a model using ST2-deficient mice, ST2 receptor
signaling was the main inducer of Th2 cytokines in the
asthmatic airways, but receptor presence was dispensable for
Th2-dependent inflammation in the sensitized skin (Savinko
et al., 2013).

The IL-33/ST2 pathway appears to be involved in AD
(Cevikbas and Steinhoff, 2012; Savinko et al., 2012). Serum
levels of IL-33 were increased in patients with AD compared
with healthy controls and were significantly reduced after
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clinical improvement of skin lesions (Tamagawa-Mineoka
et al., 2014). IL-33 was reported to stimulate innate lymphoid
cells in AD (Salimi et al., 2013). IL-33 was also elevated in the
skin, but not in the serum, of patients with psoriasis, a chronic
inflammatory condition the pathogenesis of which is also
associated with MC activation (Theoharides et al., 2010).

IL-33 in Autoimmunity and Inflammation. The IL-33/
ST2 axis has been increasingly implicated in immunopathol-
ogy and inflammation (Milovanovic et al., 2012). Blood levels
of IL-33 are increased in a number of autoimmune and
inflammatory (Milovanovic et al., 2012) diseases, such as
rheumatoid arthritis (Kritas et al., 2013), systemic lupus
erythematosus (Yu et al., 2013), Sjogren’s syndrome (Awada
et al., 2014), Grave's disease (Celik et al., 2013), and
inflammatory bowel disease (Beltran et al., 2010). Genetic
polymorphism studies have identified I1L-33R1 as a suscepti-
bility gene in inflammatory bowel disease (Jostins et al.,
2012), Crohn’s disease (Franke et al., 2010), and AD (Hirota
et al., 2012). In addition to IgE-mediated allergic reactions,
MCs also participate in innate and acquired immunity (Galli
et al., 2005; Sismanopoulos et al., 2012), autoimmunity
(Rottem and Mekori, 2005), and inflammation (Theoharides
et al., 2007). In particular, MCs play a crucial role in the
pathogenesis of AD (Vasiadiet al., 2013), psoriasis (Theoharides
et al., 2010), rheumatoid arthritis (Askenase, 2003; Kritas
et al., 2013), multiple sclerosis (MS) (Karagkouni et al., 2013),
and autism (Theoharides, 2013), possibly through the “selective”
release of mediators (Theoharides et al., 2007).

Arecent study reported strong expression of IL-33 and ST2
around amyloid plaques in diseased patients with Alzheimer’s
disease compared with control brains (Xiong et al., 2014).
Release of I1L-33 from astrocytes was induced by glial
maturation factor, implicating them in neurodegenerative
diseases (Kempuraj et al., 2013). Moreover, incubation of
mouse astrocytes with amyloid-b1-42 increased IL-33 expres-
sion (Xiong et al., 2014). In fact, increasing evidence
implicates brain inflammation and cytokines in the patho-
genesis of Alzheimer’s disease (Griffin and Barger, 2010;
Rubio-Perez and Morillas-Ruiz, 2012; Griffin, 2013). Brain
inflammation may be evident in the earlier stages of the
disease and may constitute a more reasonable target for drug
development (Kozauer and Katz, 2013). Interestingly, 1L-33
was also upregulated in astrocytes and peripheral leukocytes
of MS patients (Christophi et al., 2012). Moreover, expression
of IL-33 and IL-33 genes was increased in patients with
remitting-relapsing MS (Zhang et al., 2014). Mast cells have
been implicated in brain inflammation (Theoharides and
Zhang, 2011).

A recent study using an ovalbumin mouse model reported
that inhalation of hyphochlonite [CID (2)] induced non-
allergic lung hypersensitivity, an effect absent in ankyrin
1-null mice or W/WY MC-deficient mice (Hox et al., 2013).
These results are interesting in view of the fact that ankyrin 2
was strongly associated with autism (De Rubeis et al., 2014;
lossifov et al., 2014). Many children with autism are
characterized by allergic symptoms (Angelidou et al., 2011;
Theoharides, 2013) and the risk of autism is much more
common in children with mastocytosis (Theoharides, 2009). In
fact, autism involves brain inflammation (Ashwood and Van
de Water, 2004; Zhang et al., 2010) and microglial activation
(Suzuki et al., 2013; Gupta et al., 2014). Moreover, there is
evidence of cross-talk between microglia and MCs (Skaper
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etal.,2014). Itis interesting that the diseases discussed above
worsen with stress (Theoharides and Cochrane, 2004; Vasiadi
et al., 2012; Theoharides et al., 2012b; Karagkouni et al.,
2013), and MCs are activated by corticotropin-releasing
hormone secreted under stress (Theoharides et al., 2004;
Cao et al., 2005).

Treatment Possibilities

Targeting I1L-33 has been considered as a therapeutictarget
for atopic (Nabe, 2014), rheumatic (Duan et al., 2013), and
autoimmune diseases (Wang et al., 2012). Administration of
sST2 to murine splenocytes inhibited production of Th2
cytokines (e.g., IL-4 and IL-5) but not of Thl (e.g., IFN-g)
(Lohning et al., 1998). Additionally, when murine thymoma
cells were stably transfected with ST2L and then treated with
sST2, 1L-33 binding tothe ST2L was inhibited and so was the
induction of NF-kB (Hayakawa et al., 2007).

Intranasal anti—IL-33 antibody significantly inhibited
cigarette smoke—induced lung inflammation in mice, as
evidenced by reduced levels of IL-33 and ST2, as well as
decreased number of neutrophil and macrophage infiltration
along with decreased expression of inflammatory cytokines
(IL-1b, TNF, IL-17) (Qiu et al., 2013). Mice challenged with
ovalbumin and then treated with anti—IL-33 antibody or sST2
showed negative regulation of ovalbumin-induced allergic
airway inflammation (Lee et al., 2014); both treatments
decreased Th2 cytokine levels in bronchoalveolar lavage fluid
and decreased the count of eosinophils (Lee et al., 2014). One
company has announced the production of a humanized
anti-IL-33 antibody for clinical use (www.anaptysbio.com/
anti-il33). One study on human corneal epithelial cells
reported that ST2 antibody or soluble anti-ST2 protein
blocked IL-33-stimulated thymic stromal lymphopoietin and
chemokine (CCL2, CCL20, CCL22) production from these
cells at both mRNA and protein levels, (Lin et al., 2013).

On the basis of the evidence discussed above, the 1L-33/ST2
signaling pathway could serve as novel biomarker or target
for the development of new treatments (Kakkar and Lee,
2008; McLean et al., 2014). One recent paper reported the
inhibitory effect of fingolimod and newly synthesized analogs
on IL-33/ST2 signaling in dendritic cells; they reported
variable effects on inhibition of IL-13 and IFN-g production
possibly through regulation of intracellular calcium levels and
protein phosphatase 2A activity (Ruger et al., 2014). However,
the role of ST2/IL-33 appears to differ according to the tissue
target(s). Surprisingly, 1L-33 was reported to reduce the
development of atherosclerosis in ApoE knockout mice, in
spite of the fact that it elevated serum IgE levels, and
treatment with sST2 led to development of larger atheroscle-
rotic plaques (Oboki et al., 2010). This finding appears
contrary to the well known role of MCs in the development
of atherosclerosis (Sun et al., 2007; Theoharides et al., 2011).

Moreover, long term exposure (. 72 hour) of human and
mouse MCs to IL-33 resulted in significant reduction of MC
activation by antigen, suggesting that 1L-33 may have the
ability to induce “a hyporesponsive phenotype” in MCs (Jung
et al., 2013). Blocking 1L-33 also may not be as critical as
blocking ST2, as was previously reported for the TNF-a
and its receptor in experimental allergic encephalomyelitis
(Kassiotis and Kollias, 2001).
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There is also some controversy about the role of 1L-33 in
cancer. Some authors have reported that IL-33 promotes
metastasis of gastric (Yu et al., 2015) and colorectal (Liu et al.,
2014) cancers. However, other papers have reported that IL-
33 may act as an adjuvant to enhance antigen-specific tumor
immunity (Villarreal et al., 2014).

The natural flavonoid quercetin can block the ability of IL-1
to stimulate selective release of IL-6 from human MCs
(Kandere-Grzybowska et al., 2006), and its structural analog
luteolin can block the stimulatory effect of IL-33 on MC TNF
release (data not shown). Quercetin and luteolin have potent
antioxidant and anti-inflammatory actions (Middleton et al.,
2000). They both inhibit the release of histamine, leuko-
trienes, and prostaglandin D, from human cultured MCs in
response to cross-linkage of Fc«RIl (Kimata et al., 2000).
Quercetin also inhibits histamine, IL-6, IL-8, TNF-a, and
tryptase release from human MCs (Kempuraj et al., 2005;
Park et al., 2008), as well as asthma in a guinea pig model
(Moon et al., 2008) and contact dermatitis in humans (Weng
et al.,, 2012). Luteolin has also been reported to inhibit
stimulation of activated T cells (Kempuraj et al., 2008),
keratinocytes (Weng et al., 2014a), and microglia (Jang et al.,
2008).

IL-33 has been implicated in MS (Christophi et al., 2012;
Zhang et al., 2014). Luteolin has synergistic effect with IFN-b
in inhibiting activation of peripheral blood mononuclear cells
from MS patients (Sternberg et al.,, 2008, 2009). A novel
luteolin analog, tetramethoxyluteolin, is more potent that
luteolin (Weng et al., 2014b), making it an attractive molecule
for drug development especially since it is also less metabo-
lized (Walle, 2007). Black ginger is rich in methoxyluteolin
(Weietal.,2014)and it is interesting that a ginger extract was
recently reported to reduce the clinical symptoms of experi-
mental immune encephalomyelitis and 1L-33 expression in
the spinal cord of the mice (Jafarzadeh et al., 2014). Recent
reviews have discussed the possible use of flavonoids in the
treatment of neurodegenerative diseases (Jager and Saaby,
2011;Jones et al., 2012; Solanki et al., 2015). Strangely, 1L-33
has been reported to improve functional recovery after
contusion spinal cord injury in a mouse model (Pomeshchik
et al., 2015) and to attenuate experimental autoimmune
uveitis (Barbour et al., 2014). These apparently opposite
results may be attributable to species differences or the
involvement of different 1L-33 isoforms (Villarreal and
Weiner, 2015).

Conclusion

IL-33 has emerged as a major “alarm signal” that can be
released either from damaged cells or from live MCs sensing
danger. 1L-33 augments the effect of other triggers but can
also stimulate cytokine release directly. IL-33 levels and ST2
expression are high in allergic inflammation and certain
autoimmune diseases. Regulation of the release and action of
IL-33 on specific target tissues may prove to be a useful
therapeutic approach (Kakkar and Lee, 2008). However, the
apparent divergent functions of 1L-33 in different tissues,
organs, and diseases need to be further investigated. For
instance, it was recently shown that two IL-33 isoforms
facilitate the production of protective Thl and CD8 T cells
(Villarreal and Weiner, 2015). Hence, some isoforms may be
pathologic, whereas others may be protective.
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