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Mast cells are crucial for the development of allergic and
anaphylactic reactions, but they are also involved in
acquired and innate immunity. Increasing evidence
now implicates mast cells in inflammatory diseases
through activation by non-allergic triggers such as neu-
ropeptides and cytokines. This review discusses how
mast cells contribute to the inflammatory processes as-
sociated with coronary artery disease and obesity. Animal
models indicate that mast cells, through the secretion of
various vasoactive mediators, cytokines and proteinases,
contribute to coronary plaque progression and destabili-
zation, as well as to diet-induced obesity and diabetes.
Understanding how mast cells participate in these inflam-
matory processes could help in the development of
unique inhibitors with novel therapeutic applications
for these diseases, which constitute the greatest current
threat to global human health and welfare.

Non-allergic pathophysiological functions of mast cells
Mast cells were first described by Paul Ehrlich in various
tissues, but their function remained unknown until the
1950s, when they were implicated in the pathogenesis
of allergic reactions [1]. Understanding of the biological
significance and clinical implications of mast cells has in-
creased in the past few years.Mast cells are now considered
to play an important role in a wide spectrum of biological
processes ranging from innate and acquired immunity [2,3]
to inflammation [4], infection [5], and antigen presentation
[6], as well as angiogenesis and tissue repair [7]. Knowledge
of the function of mast cells has been augmented by the
discovery that they originate fromhemopoietic stem cells [8]
and white adipose tissue (WAT) [9]. These progenitor cells
migrate into tissues, where they differentiate under the
influence of various microenvironmental conditions, princi-
pally stem cell factor (SCF) [10].Mature, residentmast cells
contain many granules rich in histamine and heparin.
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Mast cells have been reported in the heart [11], and
cardiac mast cells have been shown to differ from other
connective tissue, such as skin mast cells, because the
former did not respond to morphine [12]. There is increas-
ing evidence that cardiac mast cells participate in the
development of atherosclerosis, coronary inflammation,
and cardiac ischemia [13], as well as the metabolic syn-
drome [14]. Although the mechanisms by which mast cells
participate are not fully understood, the implications are
exciting and suggest the potential use of mast cell inhibi-
tors for themanagement of these diseases. Here, we review
key evidence that mast cells participate in coronary artery
disease (CAD) and obesity through local release of numer-
ous pro-inflammatory and tissue remodeling mediators.

Atherosclerosis
Atherosclerosis is a disease of the inner layer of the arterial
wall, the intima. It is characterized by smooth muscle cell
(SMC) migration and proliferation, lipid deposition, in-
flammatory cell infiltration and matrix degradation. Accu-
mulation of blood-derived lipoprotein lipids, notably
cholesterol, eventually leads to development of atheroscle-
rotic plaques. Acute coronary syndromes are most com-
monly (75%) caused by the rupture of atherosclerotic
plaques [15], especially thin-cap fibro-atheromas, leading
to an occluding thrombus of a coronary artery; they mani-
fest clinically as unstable angina or acute myocardial
infarction (MI). Acute coronary thromboses are can also
be caused by superficial erosion of the coronary plaque.
Increasing evidence indicates that atherosclerosis involves
inflammation not only of the intima, but also of the arterial
adventitia, which may be more important than simple
cholesterol accumulation because the inflammatory plaque
is likely to break off and cause infarcts [15–17].

Increased serum levels of C-reactive protein (CRP) [18]
and interleukin (IL)-6 [18], especially intracardiac IL-6
[19], have been reported as independent risk factors for
cardiovascular disease. High plaque levels of CRP and IL-6
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were significantly related to increased risk of CAD [20].
IL-1 expressed from secondary inflammatory plaques
could also stimulate mast cells to release IL-6 [21].

Mast cells have been identified in coronary arteries
during spasm [22], accumulate in the rupture prone shoul-
der region of coronary atheromas [13,23] (Figure 1), and
are associated specifically with plaque rupture [23,24].
More importantly, mast cell numbers are correlated with
the incidence of plaque rupture and erosion [25]. Degra-
nulated mast cells were identified in the adventitia of
vulnerable and ruptured lesions in patients with MI [25].

Mast cells may also be involved in many cases of CAD
that develop in the absence of atherosclerosis. Such cases
could be associated with coronary hypersensitivity, known
as Kounis syndrome [26], or are precipitated by acute stress
[27]. Mast cells could be stimulated by corticotropin-releas-
ing hormone (CRH), secreted under stress, to release vas-
cular endothelial growth factor (VEGF) [28]. The CRH-
related peptide urocortin has also been reported to stimu-
late IL-6 release from neonatal cardiomyocytes [29].

Cardiovascular mast cell stimulation

The triggers responsible for initiating activation of cardiac
mast cells in CAD are poorly understood (Figure 1).[(Figure_1)TD$FIG]
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Of particular interest is the observation that lipoproteins,
specifically oxidized low density lipoprotein (LDL), can
activate mast cells [30]. The complement fragment C5a
is a known chemotactic factor for mast cells and is also
important in ruptured coronary plaque scar formation in
MI [31]. Such triggers do not appear to induce anaphylaxis,
and may secrete specific mediators selectively without
degranulation [32], as previously shown for IL-1 [21]
and CRH [28].

An important vascular wall-related mast cell-specific
trigger is endothelin-1 (ET-1), a 21 amino acid peptide with
mitogenic and vasoconstrictive properties that accounts for
most of the resting tone in atherosclerotic coronary arteries.
Circulating ET-1 is increased in patients with atherosclero-
sis and coronary endothelial dysfunction [33]. Long term
administration of ET-1 receptor antagonists improves
coronary endothelial function in patients with early athero-
sclerosis [34]. Administration of ET-1 to blood-perfused,
isolated rat hearts resulted in extensive mast cell degranu-
lation, increased matrix metalloproteinase 2 (MMP-2) ac-
tivity and collagendegradation [35].Whenstimulated,mast
cells induce increased expression of ET-1mRNA in cultured
endothelial cells, but also increase degradation of the ET-1
peptide through mast cell proteases [36].
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Oxidative stress and inflammation play an important
role in cardiac tissue damage when blood supply returns
after a period of ischemia, a phenomenon known as ische-
mia reperfusion (I/R) injury. Release of tumor necrosis
factor (TNF) during myocardial I/R depends on oxidative
stress and is prevented by mast cell stabilizers, and the
superoxide dismutase mimetic M-40403 has been reported
to prevent mast cell degranulation following reperfusion of
ischemic rat heart [37]. Reactive oxygen species (ROS) can
also activate mast cells [38]. Mitochondrial uncoupling
protein 2, which is known to regulate ROS production,
was recently reported to inhibit mast cell activation [39].

ROS induce the release of substance P (SP) from sensory
nerves during I/R [40]. Stimulation of these cardiac sensory
c-fibers results in SP secretion andmast cell degranulation
with renin release that activates the renin–angiotensin
system, causing sustained reperfusion arrhythmias [41];
SP receptor blockage prevented these changes [41]. Adven-
titial mast cells are localized close to nerve endings in
atherosclerotic coronary arteries and correlate with the
number of nerve fibers [42]. Moreover, SP treatment
significantly increased the number and extent of degranu-
lation of adventitial mast cells compared to controls, and
promoted intraplaque hemorrhage; these effects could be
prevented by coadministration of the neurokinin-1 recep-
tor antagonist Spantide I and did not occur in mast cell
deficient ApoE–/– mice [42]. These mice are deficient in
apolipoprotein E (ApoE), leading to hyperlipidemia and
development of spontaneous atherosclerosis. In addition to
stimulating the secretion of histamine and other inflam-
matory mediators, SP could induce mast cells to release
VEGF, an action augmented by IL-33 [43]. Nerve fibers
immunoreactive for neurotensin (NT) are also present in
the heart, and NT can lead to coronary vasoconstriction
[44]. A synergistic role of CRH and NT was reported for
acute stress-induced mast cell degranulation with an in-
crease in vascular permeability [45], possibly through
release of VEGF [28]. An NT-receptor antagonist blocked
stress-induced cardiac mast cell degranulation [46].

Infectious agents such as Chlamydia pneumonia and
Porphyromonas gingivalis have been detected in athero-
sclerosis and could activate toll-like receptors (TLRs),
which can affect atherogenesis [47]. Downstream signal-
ling of these receptors can elicit pro-inflammatory cytokine
release, lipid uptake, foam cell formation, and activation of
the cells of the adaptive immune system. Expression of
both TLR2 and TLR4 is increased in LDLr–/– and ApoE–/–

mice [48]. LDLr–/– mice are deficient in LDL receptor,
leading to hypercholesterolemia and the development of
spontaneous atherosclerosis.Mast cells expressmost TLRs
[49]. There is increasing evidence that TLR signaling may
also be elicited in the absence of infection through ‘endog-
enous’ ligands generated at sites of tissue remodeling and
inflammation. We recently reported that mast cell activa-
tion results in mitochondrial translocation to the cell sur-
face [50], and extracellular release of DNA that acts as an
‘innate pathogen’ [4].

Cardiovascular mast cell mediators

Several mast cell-derived mediators can affect cardiovas-
cular function and contribute to CAD. The development of
536
mast cell deficient mice has contributed greatly to the
understanding of their role in inflammatory processes.
These mice lack the c-kit receptor for SCF, precluding
the development of functional mast cells even though they
have normal precursors. There are two types of mast cell
deficient mice, W/Wv and kitw-sh/w-sh; both are albino
because melanocyte development requires intact c-kit,
but their other immune functions are apparently intact
[51]. Acute stress caused a greater increase in serum IL-6
in ApoE–/–, atherosclerosis-prone mice [52], an effect that
was absent in W/Wv mast cell deficient mice and partially
inhibited by disodium cromoglycate (cromolyn), a rodent
mast cell stabilizer [52]. Serum IL-6 was increased in I/R in
mice and its levels correlated with the extent of cardiac
tissue necrosis [53]; by contrast, mast cell deficient mice
had normal IL-6 levels and less cardiac tissue necrosis [53].
Human coronary artery specimens also contain mast cells
that store and release TNF [24]. Indeed, mast cells are the
only ‘immune cells’ that store preformed TNF in their
secretory granules [54]. Mast cell-derived TNF-a contrib-
utes to the upregulation of IL-6 in infiltrating leukocytes
and initiates the cytokine cascade responsible for myocyte
intercellular adhesion molecule-1 (ICAM-1) induction and
subsequent neutrophil-induced injury [55].

Atheroma size and lipid deposition were reduced in
mast cell deficient LDLr–/– mice and they had fewer T cells
and macrophages than atherosclerosis-prone LDLr–/– mice
[56]. Adoptive transfer of bone marrow-derived mast cell
precursors from normal wild-type mice to LDLr–/–

kitw-sh/w-sh mice restored atherogenesis; however, when
IL-6 and interferon-gamma (IFN-g) deficient mast cells
were reconstituted, the atherogenesis failed to occur [56].
Mast cell deficient kitw-sh/w-sh mice had significantly lower
serum cholesterol and triglyceride levels, with a concomi-
tant decrease in atherogenic apoB-containing particles and
serumpre-high density lipoprotein (HDL) and phospholipid
transfer protein activity [57]. Serum soluble intercellular
adhesion molecules were also decreased in these mast cell
deficient mice [57]

Mast cells and basophils are the richest source of hista-
mine. Blood histamine levels are associated with CAD,
severity of inflammation and atherosclerosis [58]. Hista-
mine constricts the coronary arteries and can induce coro-
nary spasm, increases vascular permeability and promotes
inflammation. Histamine also has pro-arrhythmogenic
properties, and induces SMC migration and proliferation,
as well as intimal thickening. It also induces endothelial
cell release of IL-6 and IL-8, production of which is
increased by lipopolysaccharide and TNF-a,, which can
also contribute to endothelial apoptosis [59].

Cardiac mast cells contain renin, which they secrete
during I/R, thereby initiating local angiotensin formation
[60]. Moreover, the human mast cell proteolytic enzyme
chymase has been shown to be the main cardiac source of
converting enzyme, generating the well known coronary
constrictor angiotensin II [61], which also causes arrhyth-
mias [60], endothelin release, and SMC and cardiomyocyte
apoptosis. Mast cell chymase activates pro-MMP-1, and
human mast cells also secrete MMP-9 on contact with
activated T cells through the activation of TNF-a [62].
Chymase, tryptase, and cathepsin G can degrade vascular
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endothelial cadherin, a molecule involved in the survival
signaling of endothelial cells and plaque erosion [63].
Tryptase further leads to inflammation through protease
activated receptors, which are stimulated by thrombin on
mast cells [64].

Mast cells produce arachidonic acid metabolites. The
5-lipoxygenase (5-LO) cascade leads to formation of leuko-
trienes, which exhibit strong pro-inflammatory activity in
cardiovascular tissues [65]. Expression of the 5-LO path-
way is increased in the arterial walls of patients with
various stages of atherosclerosis, and mast cells in athero-
sclerotic plaques are positive for 5-LO [66]. Deficiency of
one 5-LO allele conferred potent protection against the
development of atherosclerosis in LDLr–/– mice, and leuko-
triene B4 receptor antagonism was also protective in three
atherosclerosis susceptible mouse strains [66].

Mast cell-derived IL-8, monocyte chemotactic protein-1
and regulated upon activation, normal T cell expressed,
and secreted (RANTES) could recruit macrophages and
mast cells to the affected coronary arteries, thereby wors-
ening the problem.

Obesity and diabetes
The increase in the prevalence of obesity and its strong
association with insulin resistance and type 2 diabetes
have recently also been linked to inflammation. [67–70].
There are two types of adipose tissue that have essentially
antagonistic functions: WAT, which regulates energy bal-
ance [71], and brown adipose tissue (BAT), which affects
sensitivity to insulin and susceptibility to weight gain [72].
During the past few years, adipocytes in WAT have been
implicated in the production of adipocytokines [73] such as
[(Figure_2)TD$FIG]

Figure 2. Mast cells stained with toluidine blue (arrows) (a) close to coronary blood vess

in white adipose tissue.
IL-6 [74], chronic inflammation, and adiponectin and lep-
tin secretion as well as insulin resistance [73].

Adipocytokines have also been associated with allergic
inflammation and mast cells [75]. Lipoproteins [30] and
advanced glycation end products that accumulate in dia-
betes and obesity can activatemast cells [76].Macrophages
[77] and T cells [78] are also increased in obese WAT
compared to lean tissue. Saturated fatty acids can stimu-
late TLRs [79], leading to activation of the inflammasome
and release of IL-1 [80]. Genetic loss of TLR4 can amelio-
rate insulin resistance [81].

WAT from obese humans and mice contains more mast
cells (Figure 2) than WAT from their lean counterparts
[82]. kitw-sh/w-sh mast cell deficient mice fed a Western-
patterned diet (high in fat and sugar) for 12 weeks gained
significantly less body weight than wild-type congenic
controls; in addition, serum and WAT levels of inflamma-
tory cytokines, chemokines, and proteases were reduced
as glucose homeostasis and energy expenditure improved
[82]. Adoptive transfer of bone marrow-derived mast cell
progenitors from different cytokine deficient mice into
kitw-sh/w-sh mast cell deficient mice demonstrated that
mast cells contributed to diet-induced obesity by produc-
ing inflammatory cytokines such as IL-6 and IFN-g [82].
kitw-sh/w-sh mice that received bone marrow-derived pro-
genitors from IL-6�/�mice and IFN-g�/�mice showed less
body weight gain and improved glucose tolerance [82].
Other studies have shown that TNF-a is overexpressed in
WAT from obese subjects and mediates insulin resistance
by targeting insulin receptor substrate 1 [83]. Lack of
TNF-a ligand or the p55 TNF receptor improves insulin
sensitivity and glucose homeostasis, suggesting that this
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inflammatory response is important in the regulation of
insulin action in obesity [84].

kitw-sh/w-sh mice and those receiving cromolyn also
exhibited significantly lower concentrations of serum lep-
tin than wild-type controls [82]. Leptin is a cytokine-like
hormone, secreted principally by adipocytes, that regulates
body weight and food intake but also has beneficial actions
inmetabolic and immune functions [85]. Humanmast cells
express both leptin and leptin receptors [86]. Mast cells are
mostly localized next to microvessels in WAT and may
contribute to obesity by promoting angiogenesis (Figure 1).
Microvessels not only promote WAT tissue increase, but
also permit macrophage infiltration, followed by adipocy-
tokine release and further angiogenesis and WAT involve-
ment in obesity [87]. It is interesting that inhibition of
angiogenesis blocked adipose tissue development in mice
[88].

Obesity is a major risk factor for insulin resistance and
type 2 diabetes. How obesity promotes insulin resistance
remains unclear, but the inflammatory response is thought
to be a potentially important mechanism that could alter
adipose tissue function, leading to systemic insulin
resistance [70]. Adipocytes are the only cells that release
adiponectin, associated with insulin resistance, and
patientswith type 2 diabetes are reported to have decreased
circulating adiponectin. [89]. CRH regulates adipocyte me-
tabolism, and both CRH receptor 1 (CRH-R1) and CRH-R2
are expressed by human adipocytes [90]. These results
indicate that CRH may regulate adipocyte function both
directly and through adipocyte-associated mast cells [91].

Treatment approaches
Therapeutic interventions through inhibition of inflamma-
torypathwaysappearpromising inCADandobesity [92,93].
A recent study showed that treatment of obese type 2
diabetics with etanercept, a TNF-a antagonist, resulted
in improved glycemia and increased adiponectin levels
Table 1. Mechanisms through which mast cells contribute to the
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[94]. Thiazolidienes, which are potent agonists of peroxi-
some proliferator-activated receptor gamma (PPARg), can
restore lipogenic function to adipocytes and also possess
anti-inflammatoryproperties [95,96].Thebeneficial effect of
acetyl salicylic acid inCADand diabetes alsomay result not
from its anti-clotting but from its anti-inflammatory effect
[97]. Moreover, recent evidence indicates that statins also
have anti-inflammatory actions [98].

Given the findings discussed above, with respect to the
potential mechanisms through which mast cells could
contribute to CAD (Table 1) and obesity, it would be
desirable to block mast cells. Unfortunately, there is no
effective human mast cell inhibitor available (Table 2).
Although cromolyn inhibits histamine secretion from ro-
dent mast cells, it is a very weak inhibitor of human mast
cells [99]. The histamine-1 receptor antagonist ketotifen,
which also partially inhibitsmast cells, is available only for
allergic conjunctivitis in the USA. Some of the non-sedat-
ing histamine-1 receptor antagonists, such as azelastine,
partially inhibit the release of mediators from humanmast
cells [100]. The newest histamine-1 receptor antagonist,
rupatadine (not available in the USA), which blocks the
action of platelet activating factor and has anti-eosinophil-
ic properties, also exhibits mast cell inhibitory actions
[101]. Histamine-3 receptor agonists are auto-inhibitory
on mast cells and have been considered as potential treat-
ments for CAD [102]

Several chymase inhibitors are being developed, but are
not clinically available [103]. At least one tryptase inhibi-
tor, APC 2059, has been tested for asthma [104] and could
be used for CAD-related indications.

Niacin is well known for its ability to reduce total
cholesterol and LDL, while increasing HDL [105]. Recent
evidence indicates that niacinmay also prevent the release
of inflammatory mediators from adipocytes [105]. Howev-
er, niacin causes intense flush, even in slow or extended
release forms [106], which limits compliance. A new
pathogenesis of coronary artery disease
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Table 2. Compounds affecting mast cell functions

Class and compound Mast cell action Potency Use

Phenols

Cromolyn # Histamine secretion* + Allergic conjunctivitis

Food allergy

Ledoxamine # Histamine secretion + Allergic conjunctivitis

Luteolin # Histamine and cytokine secretion +++ Dietary supplement

Quercetin # Histamine and cytokine secretion + + + Dietary supplement

Antihistamines

Azelastine # Histamine and cytokine secretion + Allergic conjunctivitis

Desloratadine # Histamine and cytokine secretion + Allergies, pruritus

Hydroxyzine # Histamine and cytokine secretion + Allergies, mast cell inhibition

Ketotifen # Histamine and cytokine secretion ++ Allergies, pruritus

Rupatadine # Histamine and cytokine secretion +++ Allergies, pruritus, mast cell inhibition

Enzyme inhibitors

a-1 Antitrypsin Mast cell inhibition ?

Anti-IgE Mast cell inhibition Asthma

Chymase inhibitors

(e.g. APC 2059, APC 366)

Mast cell stabilization,

# lipid deposition, # local

renin–angiotensin system activation

?

*Potent inhibition in rodents but not in humans.

Table 3. Unique benefits of CardioNiacinW*

Component Actions Side effects References

Niacin, extended release # cholesterol, #LDL, "HDL, # adipocytokines Flush [105,106]

Luteolin # Inflammation, # flush, # mast cell activation,

# adipocyte-dependent macrophage activation,

improves endothelial insulin sensitivity

N/A [107–109,111,113]

Luteolin-glycoside # Cholesterol, #LDL N/A [112]

Quercetiny # Inflammation, # flush, # mast cell activation,

# CRP, # IL-6, # PGD2, mimics GLP-1 actions

N/A [111,115]

Olive kernel oil # Cholesterol, # LDL, " absorption of flavonoids N/A

LDL, low density lipoprotein; HDL, high density lipoprotein; CRP, C-reactive protein; IL-6, interleukin-6; PGD2, prostaglandin D2; GLP-1, glucagon-like peptide-1.

*Covered by US Patent Nos. 6,624,148, 7,115,278, 7,759,307, and 11/999,991

yWater soluble (patent pending).
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dietary supplement (Table 3), formulated in olive kernel oil
to increase absorption of the active ingredients and provide
the well known ‘Mediterranean diet’ effect, contains ex-
tended release niacin together with the naturally occurring
flavonoids luteolin and quercetin, which prevent niacin-
induced flush [107–109]. Luteolin and quercetin exhibit
potent antioxidant and anti-inflammatory [110] as well as
mast cell inhibitory [111] actions, and inhibit mast cell
release of IL-6 and PGD2 [21]. In addition, 7-luteolin-
glycoside has an independent ability to reduce total cho-
lesterol [112]. Luteolin suppresses adipocyte activation of
macrophages and also inhibits inflammation and increases
the insulin sensitivity of the endothelium [113,114].
Quercetin mimics the action of glucagon-like peptide-1, a
promising target for type 2 diabetes [115]. As yet, there is
only anecdotal evidence of positive effects. However, a pilot
clinical trial of this formulation is under way, with a larger
double-blind study planned for the near future.

Recently, a clinical study comparing simvastatin alone
to simvastatin plus extended release niacin (Niaspan) was
halted prematurely because of no apparent reduction in
cardiovascular events, and a possible increase in strokes
after the study was halted [116,117]. However, this study
used subjects already controlled on statins, did not figure
in the adverse effect of niacin-induced flush, and did not
investigate the contribution of inflammatory markers.
Moreover, contrary to the preliminary findings that led
to the discontinuation of this study, a recent meta-analysis
indicated a reduction in cardiovascular events among
those taking niacin, possibly with the exception of strokes
[118]. In addition, animal studies have shown that niacin
can actually prevent strokes [119,120]. Further research
will be needed to clarify the differences among these find-
ings.

Concluding remarks
Diverse evidence indicates that inflammation contributes
greatly to CAD, obesity, and the metabolic syndrome.
Increasing evidence now implicates mast cells in inflam-
matory diseases through activation by non-allergic trig-
gers such as neuropeptides and cytokines. Targeting mast
cells and their downstream effects might be beneficial for
the treatment of CADand obesity. Amultimodal treatment
might be the best approach for these diseases, with for-
mulations that combine anti-inflammatory agents, such as
select flavonoids, with niacin.
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