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Abstract
SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin converting enzyme 2 (ACE2) 
on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evi-
dence indicates that SARS-CoV-2 infection produces neuroinflammation associated with neurological, neuropsychiatric, and 
cognitive symptoms persists well past the resolution of the infection, known as post-COVID-19 sequalae or long-COVID. 
The neuroimmune mechanism(s) involved in long-COVID have not been adequately characterized. In this study, we show 
that recombinant SARS-CoV-2 full-length S protein stimulates release of pro-inflammatory IL-1b, CXCL8, IL-6, and 
MMP-9 from cultured human microglia via TLR4 receptor activation. Instead, recombinant receptor-binding domain (RBD) 
stimulates release of TNF-α, IL-18, and S100B via ACE2 signaling. These results provide evidence that SARS-CoV-2 spike 
protein contributes to neuroinflammation through different mechanisms that may be involved in CNS pathologies associated 
with long-COVID.

Keywords ACE2 · Brain · Corona virus · Cytokines · Inflammation · Microglia · Toll-like receptors · Spike protein

Abbreviations
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Introduction

COVID-19 develops following infection with SARS-CoV-2 
after binding to the surface receptor, angiotensin convert-
ing enzyme 2 (ACE2) via the receptor-binding domains 
(RBD) of its corona spike (S) protein [1–3]. COVID-19 is 

associated with a complex immune response that involves 
the release of a “storm” [4–6] of pro-inflammatory cytokines 
[4, 5, 7–13], especially IL-1β [14, 15] and IL-6 [16–19].

About 20% of patients infected with SARS-CoV-2 
develop a post-acute syndrome [20] within months after the 
infection, named “Long-COVID” [20–27]. This condition 
is characterized by persistent fatigue, neurological [28–36], 
neurodegenerative [31, 37, 38], psychiatric [39–45], and 
cognitive [40–51] symptoms, especially brain fog [20, 22, 
23, 39, 52–56]. In one study, most hospitalized patients had 
neurological symptoms that lasted at least 6 months [57].

Post-mortem analysis of brains obtained from deceased 
patients with COVID-19 infection showed extensive micro-
glial activation and neuroinflammation associated with brain 
pathology [58–61]. SARS-CoV-2 neurotropism may trigger 
or exacerbate neuropsychiatric disorders [48], since micro-
glia-induced neuroinflammation is a risk factor for the devel-
opment of major depressive disorder [62, 63]. Increasing 
evidence indicates the involvement of neuro-inflammation 
[64–66] that may damage brain blood vessels [67, 68] and 
brain cells [64, 69, 70] possibly via activation of microglia 
[71, 72]. As such, long-COVID could be considered a state 
of “brain autoimmunity” [73].
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Microglia are resident macrophage-like cells of the cen-
tral nervous system (CNS) that perform important functions 
[74–78] including COVID-19 [79, 80]. Microglia have also 
been implicated in neuroinflammatory [78, 81, 82] and 
neurodegenerative [74, 83, 84] diseases. Microglia express 
toll-like receptors (TLRs) [85] that are activated by dam-
age associated molecular patterns (DAMPs) and one study 
demonstrated that SARS-CoV-2 S protein could trigger a 
pro-inflammatory response in cultured microglia cells [86].

Here, we show that SARS-CoV-2 spike protein contributes 
to neuro-inflammation through different mechanisms that may 
be involved in CNS pathologies associated with long-COVID.

Materials and Methods

Human Microglia Cell Culture

The immortalized human microglia-SV40 cell line derived 
from primary human microglia was purchased from Applied 
Biological Materials Inc. (ABM Inc.; Richmond, BC, Can-
ada) and cultured in Prigrow III medium supplemented with 
10% fetal bovine serum (FBS) and 1% penicillin/streptomy-
cin in type I collagen-coated T25-flasks (ABM Inc.). Micro-
glia-SV40 maintain their phenotype and proliferation rates 
for over 10 passages, during which all experiments were 
performed using multiple microglia thaws and sub-cultured 
cells. Experiments were carried out in type I collagen-coated 
plates (BD PureCoat™ ECM Mimetic Cultureware Colla-
gen I peptide plates, Becton Dickinson, Bedford, MA). Cell 
viability was determined by trypan blue (0.4%) exclusion.

Microglia Treatments

Human microglia were stimulated with 1–10 ng/mL of 
recombinant full-length SARS-CoV-2 S (Abcam, Waltham, 
MA and/or GeneTex, Irvine, CA), 1–10 ng/mL of RBD 
(Abcam, Waltham, MA and/or GeneTex, Irvine, CA), and/
or pretreated with 2 μg/mL of anti-TLR2 Ab (InvivoGen, 
San Diego, CA), 2 μg/mL of anti-TLR4 Ab (InvivoGen, San 
Diego, CA), or 2 μg/mL of anti-ACE2 Ab (InvivoGen, San 
Diego, CA). Lipopolysaccharides (LPS) (10 ng/mL) and 
neurotensin (NT) (10 nM) were used as positive controls.

Proinflammatory Mediator Release

Microglia (0.5 ×  105 cells/well) were seeded in 12-well, type I 
collagen, or poly-L-lysine–coated plates (Becton Dickinson, Bed-
ford, MA) for 24 h before stimulation with full-length SARS-
CoV-2 S (1–10 ng/mL) or RBD (1–10 ng/mL) was carried out. 
For selected experiments, microglia were pretreated with anti-
TLR2 Ab or anti-TLR4 Ab or anti-ACE2 Ab for 24 h before 
stimulation with full-length SARS-CoV-2 S or RBD. After 24 h, 

supernatant fluids were collected and concentrations of IL-1β, 
CXCL8, IL-6, TNF-α, MMP9, S100B, and IL-18 were meas-
ured using commercially available ELISA DuoSet kits (DY201, 
DY208, DY206-05, DY210-05, DY911-05, DY1820-05, and 
DY318-05 respectively) from R&D Systems (Minneapolis, MN) 
according to the manufacturer’s instructions. Control cells were 
treated with equal volume of culture medium in all experiments. 
The detection limits of IL-1β were 3.91–250 pg/mL, CXCL8 
were 31.3–2000 pg/mL, IL-6 were 9.38–600 pg/mL, TNF-α were 
15.6–1000 pg/mL, MMP9 were 31.3–2000 pg/mL, S100B were 
46.9–3000 pg/mL, and IL-18 were 11.7–750 pg/mL.

Statistical Analysis

All in vitro conditions were performed in triplicate, and 
all experiments were repeated at least three times (n = 3). 
Results are presented as mean ± standard error of the mean 
(SEM). Differences between two groups were assessed using 
the Student’s t-test. Comparisons among at least three groups 
were tested by one-way analysis of variance (ANOVA), and 
then post hoc comparisons to determine significant differ-
ences between several experimental groups and the control 
group and between two groups were performed using Dun-
nett’s test and Bonferroni test, respectively. Differences with 
P-values less than 0.05 were considered statistically signifi-
cant. All analyses were performed using Graph Pad Prism 5.

Results

SARS‑CoV‑2 Spike Protein Stimulates Secretion 
of Pro‑Inflammatory Mediators from Human 
Microglia in a Dose‑Dependent Manner

We analyzed the effect of full-length S protein on secretion 
of pro-inflammatory mediators, including IL-1β and CXCL8, 
in human cultured microglia. Upon stimulation with different 
concentrations (1, 5, or 10 ng/mL) of recombinant SARS-
CoV-2 full-length S protein for 24 h, pro-inflammatory 
protein levels in the cell culture supernatants were signifi-
cantly elevated, compared with those in controls in a dose-
dependent manner (Fig. 1A, B). The data were confirmed by 
two different sources (Abcam and GeneTex) of recombinant 
SARS-CoV-2 full length S (Supplemental Fig. 1).

SARS‑CoV‑2 Spike Protein and RBD Stimulate 
Secretion of Different Pro‑Inflammatory Mediators 
from Human Microglia

We examined the effects of recombinant SARS-CoV-2 full-
length S and RBD on secretion of the pro-inflammatory media-
tors IL-1β, CXCL8, IL-6, TNF-α, IL-18, MMP9, and S100B 
from human cultured microglia. Stimulation with full-length S, 
but not RBD for 24 h, stimulated significant release of IL-1β, 
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CXCL8, IL-6 and MMP9 compared to controls (Fig. 2A–D). 
Interestingly, both full-length S and RBD were able to stimulate 
secretion of TNF-α and S100B levels (Fig. 2E and F). How-
ever, stimulation with RBD alone for 24 h was able to stimulate 
significant secretion of IL-18 compared to controls (Fig. 2G). 
The data were confirmed by two different sources (Abcam and 
GeneTex) of SARS-CoV-2 S and RBD (Supplemental Fig. 2).

SARS‑CoV‑2 Spike Protein Stimulates IL‑1β, CXCL8, 
IL‑6, and MMP9 Secretion from Human Microglia 
via TLR4

To examine whether the recombinant SARS-CoV-2 full-
length S-induced pro-inflammatory responses in human 
microglia are mediated by TLR2 or TLR4 signaling, we 
pre-incubated human microglia with an anti-TLR2 Ab, 
anti-TLR4 Ab, and anti-ACE2 Ab. Stimulation of human 
microglia by full-length S (10 ng/mL) resulted in significant 
secretion of IL-1β, CXCL8, IL-6, and MMP9 for 24 h, which 
was completely suppressed by pretreatment with 2 μg/mL 
of anti-TLR4 Ab (Fig. 3A–D). However, pretreatment with 
anti-TLR2 Ab or anti-ACE2 Ab did not reduce proinflam-
matory mediator release (Fig. 3A, B).

SARS‑CoV‑2 Spike and RBD Stimulates TNF‑α 
and S100B Secretion from Human Microglia 
via TLR2, TLR4, and ACE2

As TNF-α and S100B secretion from human microglia are 
stimulated by both full-length S and RBD, we further exam-
ined whether TLR2, TLR4, or ACE2 signaling mediate the 

pro-inflammatory responses. Human microglia stimulated by 
full-length S protein (10 ng/mL) secreted TNF-α for 24 h, 
which was completely suppressed by pretreatment with anti-
TLR2 Ab or anti-TLR4 Ab (2 μg/mL), while S100B levels 
were suppressed by pretreatment with 2 μg/mL anti-TLR4 
Ab only (Fig. 4A, B). RBD stimulated TNF-α and S100B 
secretion, which was completely suppressed by pretreatment 
with 2 μg/mL of anti-ACE2 Ab (Fig. 4A, B).

RBD Stimulates IL‑18 Secretion from Human 
Microglia via ACE2

RBD (10 ng/mL, for 24 h) stimulated IL-18 secretion from 
human microglia which was completely suppressed by pre-
treatment with 2 μg/mL of anti-ACE2 Ab (Fig. 5).

Discussion

The SARS-CoV-2 S protein attaches to the surface receptor 
ACE2 via the S1 subunit containing the RBD, while the S2 
subunit containing a transmembrane anchor that is needed to 
fuse the viral envelope with the host’s cell surface membrane [1].

Our findings show that the recombinant whole length 
S protein and the RBD can stimulate human microglia to 
secrete distinct pro-inflammatory mediators via activation 
of different receptors. Our data further indicate that whole 
length S protein stimulates secretion of IL-1β and CXCL8 
not via activation of ACE2, but rather activation of TLR-
4. In contrast, RBD stimulates release of IL-18, TNF-α, 
and S100B via ACE2. SARS-CoV-2 has been reported to 

Fig. 1  SARS-CoV-2 spike protein stimulates secretion of proinflam-
matory mediators from human microglia in a dose-dependent man-
ner. SV40 microglia (1.0 × 10.5 cells) were stimulated with recom-
binant SARS-CoV-2 full-length S protein (1–10  ng/mL) for 24  h. 
Secretion of IL-1β (A) and CXCL8 (B) was determined by specific 

ELISAs. LPS (10 ng/mL) and NT (10 nM) were used as “positive” 
controls. All conditions were performed in triplicate for each dataset 
and repeated 3 times (n = 3). Significance of comparisons is denoted 
by P < 0.05
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activate TLRs [87, 88] leading to release of immune mol-
ecules that could contribute to neurologic symptoms [89]. 
In addition, increased levels of pro-inflammatory cytokines, 
especially IL-6 [90, 91], have also been detected in the CSF 
of COVID-19 patients [90]. SARS-CoV-2 spike protein has 
been reported to stimulate BV-2 microglia leading to release 
of IL-1β, IL-6, and TNF and increase expression of TLR4 
[86]. In fact, TLR4 has been considered a therapeutic target 

Fig. 2  SARS-CoV-2 S and RBD stimulate a differential secretion of 
pro-inflammatory mediators from human microglia. SV40 microglia 
(1.0 × 10.5 cells) were stimulated with recombinant SARS-CoV-2 
full-length S protein (1–10 ng/mL) and RBD (1–10 ng/mL) for 24 h. 
Secretion of IL-1β (A), CXCL8 (B), IL-6 (C), MMP9 (D), TNF-α 
(E), S100B (F), and IL-18 (G) was determined by specific ELISAs. 
LPS (10 ng/mL) and NT (10 nM) were used as “positive” controls. 
All conditions were performed in triplicate for each dataset and 
repeated 3 times (n = 3). Significance of comparisons is denoted by 
P < 0.05

◂

Fig. 3  Full-length SARS-CoV-2 S stimulates IL-1β, CXCL8, IL-6, 
and MMP9 secretion from human microglia via TLR4 signaling. 
SV40 microglia (1.0 × 10.5 cells) were pretreated with anti-TLR2 Ab 
(2 μg/mL), anti-TLR4 Ab (2 μg/mL), or anti-ACE2 Ab (2 μg/mL) for 
24 h and then stimulated with recombinant SARS-CoV-2 full-length 

S (1–10 ng/mL) or RBD (1–10 ng/mL) for 24 h. Secretion of IL-1β 
(A), CXCL8 (B), IL-6 (C), and MMP9 (D) was determined by spe-
cific ELISAs. All conditions were performed in triplicate for each 
dataset and repeated 3 times (n = 3). Significance of comparisons is 
denoted by P < 0.05
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for neurological complications associated with SARS-CoV-2 
infection [92]. Moreover, activation of TLR4 increased 
expression of ACE2 [93] further enhancing viral infectivity 
in an autocrine loop. Another paper reported that infection 
of HMC3 microglia also led to the release of IL-1β, IL-6, 
and TNF-α [94].

Our results showing the release of IL-18 and S100B 
are novel. IL-18 is longer acting than other proinflamma-
tory cytokines [95] and its expression was increased in the 
amygdala of children with ASD [96–98]. The mechanism 
of action of IL-18 is different than that of IL-1β because 
unlike the former, IL-18, the latter activates MAP kinases 
and not NF-kB [99].

S100B has been implicated in neurologic diseases 
[100–102]. In particular, elevated levels of S100B were 
associated with mild traumatic brain injury (TBI) [103], 
Parkinson’s disease (PD) [104], ASD [105], and COVID-
19 [106, 107]. In addition, S100B was reported to promote 
microglia polarization towards a pro-inflammatory (M1) 
phenotype [108, 109] suggesting autocrine effects.

Our data support the notion that the neurologic effects of 
COVID-19 [110–113] may be due to SARS-CoV-2 activat-
ing microglia that have been implicated in mental health dis-
orders [114–117]. How SARS-CoV-2 enters the CNS is still 
unclear [118, 119]. One possibility is that the virus crosses 
the blood–brain barrier (BBB) [66, 120–122] or enters the 
brain via the olfactory nerve tract [123–125].

Fig. 4  SARS-CoV-2 S stimulates TNF-α and S100B secretion from 
human microglia via TLR2, TLR4, and ACE2. SV40 microglia 
(1.0 × 10.5 cells) were pretreated with anti-TLR2 Ab (2 μg/mL), anti-
TLR4 Ab (2 μg/mL), or anti-ACE2 Ab (2 μg/mL) for 24 h and then 
stimulated with recombinant SARS-CoV-2 full-length S (1–10  ng/

mL) and RBD (1–10 ng/mL) for 24 h. Secretion of TNF-α (A) and 
S100B (B) was determined by specific ELISAs. All conditions were 
performed in triplicate for each dataset and repeated 3 times (n = 3). 
Significance of comparisons is denoted by P < 0.05

Fig. 5  RBD stimulates IL-18 secretion from human microglia via 
ACE2 signaling. SV40 microglia (1.0 × 10.5 cells) were pretreated 
with anti-TLR2 Ab (2  μg/mL), anti-TLR4 Ab (2  μg/mL), or anti-
ACE2 Ab (2 μg/mL) for 24 h and then stimulated with recombinant 
SARS-CoV-2 full-length S (1–10 ng/mL) and RBD (1–10 ng/mL) for 
24 h. Secretion of IL-18 was determined by specific ELISA. All con-
ditions were performed in triplicate for each dataset and repeated 3 
times (n = 3). Significance of comparisons is denoted by P < 0.05
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Our study has some limitations. We used SV40 immor-
talized microglia cells that are already fixed in M1 pro-
inflammatory phase. Future studies will validate these 
results using iPSC-derived and primary microglia. Moreo-
ver, gene expression of the receptors and mediators should 
also be studied.

In conclusion, the SARS-CoV-2 spike protein can stimu-
late secretion of different pro-inflammatory molecules via 
activation of distinct receptors on cultured human micro-
glia leading to neuro-inflammation [64–66] that could dam-
age brain cells [64, 69, 70]. Preventing or minimizing the 
detrimental effects of the spike protein could lead to novel 
targeted treatment approaches [126, 127].
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